mishrabp commited on
Commit
6f1f755
·
verified ·
1 Parent(s): 8bc4218

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +126 -164
README.md CHANGED
@@ -1,199 +1,161 @@
 
1
  ---
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
198
 
199
- [More Information Needed]
 
1
+
2
  ---
3
+ license: mit
4
+ tags:
5
+ - causal-lm
6
+ - instruction-following
7
+ - loRA
8
+ - QLoRA
9
+ - quantized
10
+ language: en
11
  library_name: transformers
12
+ base_model: microsoft/phi-2
13
  ---
14
 
15
+ # Phi-2 QLoRA Fine-Tuned Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
17
 
18
+ **Model:** `mishrabp/phi2-custom-response-qlora-adapter`
19
 
20
+ **Base Model:** [`microsoft/phi-2`](https://huggingface.co/microsoft/phi-2)
21
 
22
+ **Fine-Tuning Method:** QLoRA (4-bit quantized LoRA)
23
 
24
+ **Task:** Instruction-following / Customer Support Responses
25
 
26
+ ---
27
 
28
+ ## Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ This repository contains a **Phi-2 language model fine-tuned using QLoRA** on a synthetic dataset of customer support instructions and responses. The fine-tuning uses **4-bit quantized LoRA adapters** for memory-efficient training and can run on GPU or CPU (slower on CPU).
31
 
32
+ The model is designed for **instruction-following tasks** like customer support, FAQs, or other dialog generation tasks.
33
 
34
+ ---
35
 
36
+ ## Training Data
37
 
38
+ The fine-tuning dataset is synthetic, consisting of 3000 instruction-response pairs:
39
 
40
+ **Example:**
41
 
42
+ ```text
43
+ Instruction: "Customer asks about refund window #1"
44
+ Response: "Our refund window is 30 days from delivery."
45
+ ```
46
 
47
+ Here is the dataset that was used for fine-tunning:
48
+ https://huggingface.co/datasets/mishrabp/customer-support-responses/resolve/main/train.csv
49
 
50
+ You can replace the dataset with your own CSV/JSON file to train on real-world data.
51
 
52
+ ---
53
 
54
+ ## Intended Use
55
 
56
+ * Generate responses to instructions in customer support scenarios.
57
+ * Small-scale instruction-following experiments.
58
+ * Educational or research purposes.
59
 
60
+ ---
61
 
62
+ ## How to Use
63
+
64
+ ### Load the Fine-Tuned Model
65
+
66
+ ```python
67
+ import torch
68
+ from transformers import AutoTokenizer, AutoModelForCausalLM
69
+ from peft import PeftModel
70
+
71
+ # -----------------------------
72
+ # Load fine-tuned model from HF
73
+ # -----------------------------
74
+ model_name = "mishrabp/phi2-custom-response-qlora-adapter"
75
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
76
+ base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
77
+ model = PeftModel.from_pretrained(base_model, model_name)
78
+
79
+ device = "cuda" if torch.cuda.is_available() else "cpu"
80
+ model.to(device)
81
+
82
+ # -----------------------------
83
+ # Sample evaluation dataset
84
+ # -----------------------------
85
+ eval_data = [
86
+ {"instruction": "Customer asks about refund window", "reference": "Our refund window is 30 days from delivery."},
87
+ {"instruction": "Order arrived late", "reference": "Sorry for the delay. A delivery credit has been applied."},
88
+ {"instruction": "Wrong item received", "reference": "We’ll ship the correct item and provide a return label."},
89
+ ]
90
+
91
+ # -----------------------------
92
+ # Evaluation loop
93
+ # -----------------------------
94
+ for i, example in enumerate(eval_data, 1):
95
+ prompt = f"### Instruction:
96
+ {example['instruction']}
97
+
98
+ ### Response:"
99
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
100
+ output_ids = model.generate(**inputs, max_new_tokens=50)
101
+ generated = tokenizer.decode(output_ids[0], skip_special_tokens=True)
102
+
103
+ print(f"Example {i}")
104
+ print("Instruction:", example["instruction"])
105
+ print("Generated Response:", generated.split("### Response:")[-1].strip())
106
+ print("Reference Response:", example["reference"])
107
+ print("-" * 50)
108
+
109
+ # -----------------------------
110
+ # Optional: compute simple token-level accuracy or BLEU
111
+ # -----------------------------
112
+ from nltk.translate.bleu_score import sentence_bleu
113
+
114
+ bleu_scores = []
115
+ for example in eval_data:
116
+ prompt = f"### Instruction:
117
+ {example['instruction']}
118
+
119
+ ### Response:"
120
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
121
+ output_ids = model.generate(**inputs, max_new_tokens=50)
122
+ generated = tokenizer.decode(output_ids[0], skip_special_tokens=True).split("### Response:")[-1].strip()
123
+
124
+ reference_tokens = example["reference"].split()
125
+ generated_tokens = generated.split()
126
+ bleu = sentence_bleu([reference_tokens], generated_tokens)
127
+ bleu_scores.append(bleu)
128
+
129
+ print("Average BLEU score:", sum(bleu_scores)/len(bleu_scores))
130
+
131
+ ```
132
 
133
+ ---
134
 
135
+ ## Training Script
136
 
137
+ The training script performs the following steps:
138
 
139
+ 1. Loads the **Phi-2 base model**.
140
+ 2. Creates a **synthetic dataset** of instruction-response pairs.
141
+ 3. Tokenizes and formats the dataset for causal language modeling.
142
+ 4. Applies a **LoRA adapter**.
143
+ 5. Trains using **QLoRA** if GPU is available, otherwise full-precision LoRA on CPU.
144
+ 6. Saves the adapter and tokenizer to `./phi2-qlora`.
145
+ 7. Pushes the adapter and tokenizer to Hugging Face Hub.
146
 
147
+ ### Requirements
148
 
149
+ ```bash
150
+ pip install torch transformers peft datasets huggingface_hub python-dotenv
151
+ ```
152
 
153
+ ---
154
 
155
+ ## Parameters
156
 
157
+ * `r=8`, `lora_alpha=16`, `lora_dropout=0.05`
158
+ * `target_modules=["q_proj","v_proj"]` (adjust for different base models)
159
+ * Learning rate: `2e-4`
160
+ * Batch si
161