Add training script
Browse files
train.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = ["trl>=0.12.0", "transformers>=4.36.0", "accelerate>=0.24.0", "trackio"]
|
| 3 |
+
# ///
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 7 |
+
from trl import SFTTrainer, SFTConfig
|
| 8 |
+
|
| 9 |
+
dataset = load_dataset("mindchain/container-status-de", split="train")
|
| 10 |
+
split = dataset.train_test_split(test_size=0.15, seed=42)
|
| 11 |
+
|
| 12 |
+
def fmt(ex):
|
| 13 |
+
return {"text": f"Status: {ex['text']}", "label": ex["label"]}
|
| 14 |
+
|
| 15 |
+
train_ds = split["train"].map(fmt, remove_columns=split["train"].column_names)
|
| 16 |
+
eval_ds = split["test"].map(fmt, remove_columns=split["test"].column_names)
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-2-270m")
|
| 19 |
+
model = T5ForConditionalGeneration.from_pretrained("google/t5gemma-2-270m")
|
| 20 |
+
|
| 21 |
+
config = SFTConfig(
|
| 22 |
+
output_dir="out",
|
| 23 |
+
push_to_hub=True,
|
| 24 |
+
hub_model_id="mindchain/t5gemma-270m-container-status",
|
| 25 |
+
num_train_epochs=5,
|
| 26 |
+
per_device_train_batch_size=2,
|
| 27 |
+
gradient_accumulation_steps=4,
|
| 28 |
+
learning_rate=3e-4,
|
| 29 |
+
logging_steps=5,
|
| 30 |
+
max_length=256,
|
| 31 |
+
report_to="trackio",
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
trainer = SFTTrainer(model=model, tokenizer=tokenizer, train_dataset=train_ds, eval_dataset=eval_ds, args=config)
|
| 35 |
+
trainer.train()
|
| 36 |
+
trainer.push_to_hub()
|
| 37 |
+
print('DONE')
|