celerity_270m_20tpp / configuration_celerity.py
melhoushi's picture
Upload model
85272bf verified
# coding=utf-8
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Copyright 2023 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Celerity configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from typing import Literal
logger = logging.get_logger(__name__)
class CelerityConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`CelerityModel`]. It is used to instantiate a Celerity
model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Celerity model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`CelerityModel`].
n_positions (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 640):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 13):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 10):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 8 times n_embd
activation_function (`str`, *optional*, defaults to `"squared_relu"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu", "squared_relu"]`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
bos_token_id (`int`, *optional*, defaults to `128000`):
BOS token ID.
eos_token_id (`int`, *optional*, defaults to `128001`):
EOS token ID.
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
position_embedding_type (`str`, *optional*, defaults to `"alibi"`):
Positional embedding can be either `"alibi"` or `"learned"`.
embeddings_scale (`float`, *optional*, defaults to 1.0):
Scaler multiplier to scale token and position embeddings.
output_logits_scale (`float`, *optional*, defaults to 1.0):
Scaler multiplier to scale output logits.
mhsa_residual_scale (`float`, *optional*, defaults to 1.0):
Scaler multiplier to scale the multi-head self-attention residual stream.
mlp_residual_scale (`float`, *optional*, defaults to 1.0):
Scaler multiplier to scale the MLP residual stream.
scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
scale_attn_weights to `True` as well.
Example:
```python
>>> from transformers import CelerityConfig, CelerityModel
>>> # Initializing a Celerity configuration
>>> configuration = CelerityConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = CelerityModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "celerity"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
attention_mask_type: Literal["causal", "full", "block_causal"] = "causal"
def __init__(
self,
vocab_size=128256,
n_positions=8192,
n_embd=640,
n_layer=13,
n_head=10,
n_inner=5120,
activation_function="squared_relu",
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=128000,
eos_token_id=128001,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
position_embedding_type="alibi",
embeddings_scale=1.0,
output_logits_scale=1.0,
mhsa_residual_scale=1.0,
mlp_residual_scale=1.0,
scale_qk_dot_by_d=True,
### BEGIN DIFFUSION PARAMETERS
num_extra_input_vocab_tokens=0,
attention_mask_type: Literal["causal", "full", "block_causal"] = "full",
### END DIFFUSION PARAMETERS
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.num_extra_input_vocab_tokens = num_extra_input_vocab_tokens
self.position_embedding_type = position_embedding_type
self.embeddings_scale = embeddings_scale
self.output_logits_scale = output_logits_scale
self.mhsa_residual_scale = mhsa_residual_scale
self.mlp_residual_scale = mlp_residual_scale
self.scale_qk_dot_by_d = scale_qk_dot_by_d
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)