lvj commited on
Commit
44aaba5
·
verified ·
1 Parent(s): 0975218

Update README.md

Browse files



@metascroy
Here's a draft of the model card

Files changed (1) hide show
  1. README.md +159 -195
README.md CHANGED
@@ -1,199 +1,163 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - torchao
5
+ - qwen
6
+ - qwen3
7
+ - nlp
8
+ - chat
9
+ - conversational
10
+ language:
11
+ - en
12
+ base_model:
13
+ - Qwen/Qwen3-4B
14
+ pipeline_tag: text-generation
15
  ---
16
 
17
+ # Quantization Recipe
18
+
19
+ Follow the setup instructions at [hf-scripts/README.md](https://gitlab.com/lisjin-group/hf-scripts/-/blob/main/README.md).
20
+
21
+ ## QAT Finetuning with PARQ
22
+
23
+ Run `bash scripts/train.sh` to finetune the model on a grade school math subset of [allenai/tulu-3-sft-olmo-2-mixture-0225](/datasets/allenai/tulu-3-sft-olmo-2-mixture-0225). You may need to adjust the variables in the script depending on your GPU count.
24
+
25
+ After training completes, the final quantized model will be saved locally at `SAVE_DIR`.
26
+
27
+ ## Inference-ready Model Conversion
28
+
29
+ Note: to `push_to_hub` you need to run
30
+ ```sh
31
+ pip install -U "huggingface_hub[cli]"
32
+ huggingface-cli login
33
+ ```
34
+ and use a token with write access, from https://huggingface.co/settings/tokens
35
+
36
+ To get the quantized model, run the following from the root of hf-scripts/:
37
+
38
+ ```py
39
+ import logging
40
+ import os
41
+ import torch
42
+
43
+ from functools import partial
44
+ from huggingface_hub import whoami, get_token
45
+ from torchao.quantization import quantize_
46
+ from torchao.quantization.quant_api import IntxUnpackedToInt8Tensor
47
+ from torchao.prototype.parq.quant import (
48
+ StretchedUnifTorchaoQuantizer,
49
+ UnifTorchaoQuantizer,
50
+ )
51
+ from torchao.prototype.parq.quant.config_torchao import _attach_hf_quantization_config
52
+ from torchao.prototype.parq.quant.config_torchao import _get_config_from_quantizer
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
54
+
55
+ from qat_utils import split_param_groups
56
+
57
+ set_seed(0)
58
+ model_path = f"{SAVE_DIR}"
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ model_path, device_map="auto", dtype="auto"
61
+ )
62
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
63
+
64
+ params_quant, _, params_embed = split_param_groups(
65
+ model, embed_pat="(lm_head|embed_tokens)", printf=logger.warning
66
+ )
67
+
68
+ # Configure linear weights
69
+ quant_bits = 2
70
+ quantizer = (
71
+ StretchedUnifTorchaoQuantizer(quant_bits)
72
+ if quant_bits < 4
73
+ else UnifTorchaoQuantizer()
74
+ )
75
+ weight_only = False
76
+ device = params_quant[0].device
77
+ linear_config = _get_config_from_quantizer(
78
+ quantizer, weight_only, device, quant_bits, group_size=None
79
+ )
80
+
81
+ # Configure embeddings
82
+ quantizer = UnifTorchaoQuantizer()
83
+ embed_config = _get_config_from_quantizer(
84
+ quantizer, weight_only, device, quant_bits=4, group_size=128
85
+ )
86
+
87
+ def _filter_fn(module, *args, param_set) -> bool:
88
+ for p in module.parameters(recurse=False):
89
+ if p.data_ptr() in param_set:
90
+ return True
91
+ return False
92
+
93
+ def _update_config(model, module_to_config, filter_fns, configs, tie_word_embeddings):
94
+ for name, module in model.named_modules():
95
+ if not hasattr(module, "weight"):
96
+ continue
97
+ elif tie_word_embeddings and name == "lm_head": # skip tied weight
98
+ continue
99
+
100
+ for i, filter_fn in enumerate(filter_fns):
101
+ if filter_fn(module):
102
+ module_to_config[name] = configs[i]
103
+
104
+ # Attach HF quantization_config
105
+ embed_filter_fn = partial(_filter_fn, param_set={p.data_ptr() for p in params_embed})
106
+ module_to_config = {"_default": linear_config}
107
+ filter_fns = [embed_filter_fn]
108
+ configs = [embed_config]
109
+ _attach_hf_quantization_config(model, filter_fns, configs, module_to_config)
110
+
111
+ # Convert quantized tensor classes to `IntxUnpackedToInt8Tensor`
112
+ linear_filter_fn = partial(_filter_fn, param_set={p.data_ptr() for p in params_quant})
113
+ quantize_(model, linear_config, filter_fn=linear_filter_fn)
114
+ setattr(model.model.embed_tokens, "bias", None)
115
+ quantize_(model, embed_config, filter_fn=embed_filter_fn)
116
+
117
+ # Push to hub
118
+ token = get_token()
119
+ username = whoami(token=token)["name"]
120
+ model_name = os.path.basename(model_path)
121
+ save_to = os.path.join(username, model_name)
122
+ model.push_to_hub(save_to, safe_serialization=False, commit_message=commit_message)
123
+ tokenizer.push_to_hub(save_to)
124
+
125
+ # Manual testing
126
+ prompt = "John writes 20 pages a day. How long will it take him to write 3 books that are 400 pages each?"
127
+ messages = [
128
+ {"role": "system", "content": "You are a helpful assistant."},
129
+ {"role": "user", "content": prompt},
130
+ ]
131
+ templated_prompt = tokenizer.apply_chat_template(
132
+ messages,
133
+ tokenize=False,
134
+ add_generation_prompt=True,
135
+ )
136
+ print("Prompt:", prompt)
137
+ print("Templated prompt:", templated_prompt)
138
+ inputs = tokenizer(templated_prompt, return_tensors="pt").to(model.device)
139
+ inputs.pop("token_type_ids", None)
140
+
141
+ start_idx = len(inputs.input_ids[0])
142
+ response_ids = model.generate(**inputs, max_new_tokens=256, **kwargs)[0]
143
+ response_ids = response_ids[start_idx:].tolist()
144
+ output_text = tokenizer.decode(response_ids, skip_special_tokens=True)
145
+ print("Response:", output_text)
146
+ ```
147
+
148
+ The response from manual testing is:
149
+ ```txt
150
+ To solve this problem, we need to determine how many days it will take John to write a total of 3 * 400 = 1200 pages.
151
+
152
+ Given that John writes 20 pages a day, we can calculate the number of days needed by dividing the total number of pages by the number of pages written per day:
153
+
154
+ \[
155
+ \frac{1200 \text{ pages}}{20 \text{ pages/day}} = 60 \text{ days}
156
+ \]
157
+
158
+ Therefore, it will take John 60 days to write the 3 books.
159
+
160
+ \[
161
+ \boxed{60}
162
+ \]
163
+ ```