Update README.md
Browse files
@metascroy
Here's a draft of the model card
README.md
CHANGED
|
@@ -1,199 +1,163 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- torchao
|
| 5 |
+
- qwen
|
| 6 |
+
- qwen3
|
| 7 |
+
- nlp
|
| 8 |
+
- chat
|
| 9 |
+
- conversational
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
base_model:
|
| 13 |
+
- Qwen/Qwen3-4B
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# Quantization Recipe
|
| 18 |
+
|
| 19 |
+
Follow the setup instructions at [hf-scripts/README.md](https://gitlab.com/lisjin-group/hf-scripts/-/blob/main/README.md).
|
| 20 |
+
|
| 21 |
+
## QAT Finetuning with PARQ
|
| 22 |
+
|
| 23 |
+
Run `bash scripts/train.sh` to finetune the model on a grade school math subset of [allenai/tulu-3-sft-olmo-2-mixture-0225](/datasets/allenai/tulu-3-sft-olmo-2-mixture-0225). You may need to adjust the variables in the script depending on your GPU count.
|
| 24 |
+
|
| 25 |
+
After training completes, the final quantized model will be saved locally at `SAVE_DIR`.
|
| 26 |
+
|
| 27 |
+
## Inference-ready Model Conversion
|
| 28 |
+
|
| 29 |
+
Note: to `push_to_hub` you need to run
|
| 30 |
+
```sh
|
| 31 |
+
pip install -U "huggingface_hub[cli]"
|
| 32 |
+
huggingface-cli login
|
| 33 |
+
```
|
| 34 |
+
and use a token with write access, from https://huggingface.co/settings/tokens
|
| 35 |
+
|
| 36 |
+
To get the quantized model, run the following from the root of hf-scripts/:
|
| 37 |
+
|
| 38 |
+
```py
|
| 39 |
+
import logging
|
| 40 |
+
import os
|
| 41 |
+
import torch
|
| 42 |
+
|
| 43 |
+
from functools import partial
|
| 44 |
+
from huggingface_hub import whoami, get_token
|
| 45 |
+
from torchao.quantization import quantize_
|
| 46 |
+
from torchao.quantization.quant_api import IntxUnpackedToInt8Tensor
|
| 47 |
+
from torchao.prototype.parq.quant import (
|
| 48 |
+
StretchedUnifTorchaoQuantizer,
|
| 49 |
+
UnifTorchaoQuantizer,
|
| 50 |
+
)
|
| 51 |
+
from torchao.prototype.parq.quant.config_torchao import _attach_hf_quantization_config
|
| 52 |
+
from torchao.prototype.parq.quant.config_torchao import _get_config_from_quantizer
|
| 53 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 54 |
+
|
| 55 |
+
from qat_utils import split_param_groups
|
| 56 |
+
|
| 57 |
+
set_seed(0)
|
| 58 |
+
model_path = f"{SAVE_DIR}"
|
| 59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
model_path, device_map="auto", dtype="auto"
|
| 61 |
+
)
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 63 |
+
|
| 64 |
+
params_quant, _, params_embed = split_param_groups(
|
| 65 |
+
model, embed_pat="(lm_head|embed_tokens)", printf=logger.warning
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Configure linear weights
|
| 69 |
+
quant_bits = 2
|
| 70 |
+
quantizer = (
|
| 71 |
+
StretchedUnifTorchaoQuantizer(quant_bits)
|
| 72 |
+
if quant_bits < 4
|
| 73 |
+
else UnifTorchaoQuantizer()
|
| 74 |
+
)
|
| 75 |
+
weight_only = False
|
| 76 |
+
device = params_quant[0].device
|
| 77 |
+
linear_config = _get_config_from_quantizer(
|
| 78 |
+
quantizer, weight_only, device, quant_bits, group_size=None
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Configure embeddings
|
| 82 |
+
quantizer = UnifTorchaoQuantizer()
|
| 83 |
+
embed_config = _get_config_from_quantizer(
|
| 84 |
+
quantizer, weight_only, device, quant_bits=4, group_size=128
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def _filter_fn(module, *args, param_set) -> bool:
|
| 88 |
+
for p in module.parameters(recurse=False):
|
| 89 |
+
if p.data_ptr() in param_set:
|
| 90 |
+
return True
|
| 91 |
+
return False
|
| 92 |
+
|
| 93 |
+
def _update_config(model, module_to_config, filter_fns, configs, tie_word_embeddings):
|
| 94 |
+
for name, module in model.named_modules():
|
| 95 |
+
if not hasattr(module, "weight"):
|
| 96 |
+
continue
|
| 97 |
+
elif tie_word_embeddings and name == "lm_head": # skip tied weight
|
| 98 |
+
continue
|
| 99 |
+
|
| 100 |
+
for i, filter_fn in enumerate(filter_fns):
|
| 101 |
+
if filter_fn(module):
|
| 102 |
+
module_to_config[name] = configs[i]
|
| 103 |
+
|
| 104 |
+
# Attach HF quantization_config
|
| 105 |
+
embed_filter_fn = partial(_filter_fn, param_set={p.data_ptr() for p in params_embed})
|
| 106 |
+
module_to_config = {"_default": linear_config}
|
| 107 |
+
filter_fns = [embed_filter_fn]
|
| 108 |
+
configs = [embed_config]
|
| 109 |
+
_attach_hf_quantization_config(model, filter_fns, configs, module_to_config)
|
| 110 |
+
|
| 111 |
+
# Convert quantized tensor classes to `IntxUnpackedToInt8Tensor`
|
| 112 |
+
linear_filter_fn = partial(_filter_fn, param_set={p.data_ptr() for p in params_quant})
|
| 113 |
+
quantize_(model, linear_config, filter_fn=linear_filter_fn)
|
| 114 |
+
setattr(model.model.embed_tokens, "bias", None)
|
| 115 |
+
quantize_(model, embed_config, filter_fn=embed_filter_fn)
|
| 116 |
+
|
| 117 |
+
# Push to hub
|
| 118 |
+
token = get_token()
|
| 119 |
+
username = whoami(token=token)["name"]
|
| 120 |
+
model_name = os.path.basename(model_path)
|
| 121 |
+
save_to = os.path.join(username, model_name)
|
| 122 |
+
model.push_to_hub(save_to, safe_serialization=False, commit_message=commit_message)
|
| 123 |
+
tokenizer.push_to_hub(save_to)
|
| 124 |
+
|
| 125 |
+
# Manual testing
|
| 126 |
+
prompt = "John writes 20 pages a day. How long will it take him to write 3 books that are 400 pages each?"
|
| 127 |
+
messages = [
|
| 128 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 129 |
+
{"role": "user", "content": prompt},
|
| 130 |
+
]
|
| 131 |
+
templated_prompt = tokenizer.apply_chat_template(
|
| 132 |
+
messages,
|
| 133 |
+
tokenize=False,
|
| 134 |
+
add_generation_prompt=True,
|
| 135 |
+
)
|
| 136 |
+
print("Prompt:", prompt)
|
| 137 |
+
print("Templated prompt:", templated_prompt)
|
| 138 |
+
inputs = tokenizer(templated_prompt, return_tensors="pt").to(model.device)
|
| 139 |
+
inputs.pop("token_type_ids", None)
|
| 140 |
+
|
| 141 |
+
start_idx = len(inputs.input_ids[0])
|
| 142 |
+
response_ids = model.generate(**inputs, max_new_tokens=256, **kwargs)[0]
|
| 143 |
+
response_ids = response_ids[start_idx:].tolist()
|
| 144 |
+
output_text = tokenizer.decode(response_ids, skip_special_tokens=True)
|
| 145 |
+
print("Response:", output_text)
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
The response from manual testing is:
|
| 149 |
+
```txt
|
| 150 |
+
To solve this problem, we need to determine how many days it will take John to write a total of 3 * 400 = 1200 pages.
|
| 151 |
+
|
| 152 |
+
Given that John writes 20 pages a day, we can calculate the number of days needed by dividing the total number of pages by the number of pages written per day:
|
| 153 |
+
|
| 154 |
+
\[
|
| 155 |
+
\frac{1200 \text{ pages}}{20 \text{ pages/day}} = 60 \text{ days}
|
| 156 |
+
\]
|
| 157 |
+
|
| 158 |
+
Therefore, it will take John 60 days to write the 3 books.
|
| 159 |
+
|
| 160 |
+
\[
|
| 161 |
+
\boxed{60}
|
| 162 |
+
\]
|
| 163 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|