Upload 8 files
Browse filesadd pre-trained checkpoints for full and partial point clouds
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/checkpoints/last.ckpt +3 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py +289 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/checkpoints/last.ckpt +3 -0
- checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py +289 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/checkpoints/last.ckpt +3 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py +225 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/checkpoints/last.ckpt +3 -0
- checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py +225 -0
checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/checkpoints/last.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30d5224635de058c47919ceb81ba57e2a4b311b063660e6e9ea914e216dbcbc8
|
| 3 |
+
size 47899897
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/ddm/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
## -------------------- Most frequently changed params here --------------------
|
| 4 |
+
|
| 5 |
+
resume_training_from_last = True
|
| 6 |
+
|
| 7 |
+
max_steps = 180000
|
| 8 |
+
batch_size = 10
|
| 9 |
+
|
| 10 |
+
num_gpus = 1
|
| 11 |
+
num_workers_per_gpu = 7
|
| 12 |
+
|
| 13 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
| 14 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
| 15 |
+
ddm_ckpt_path = None
|
| 16 |
+
|
| 17 |
+
max_scenes = None
|
| 18 |
+
|
| 19 |
+
## -------------------- Inputs/Shapes ------------------------
|
| 20 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
| 21 |
+
|
| 22 |
+
pc_num_points = 1024
|
| 23 |
+
pc_latent_dims = 64
|
| 24 |
+
pc_latent_channels = 3
|
| 25 |
+
|
| 26 |
+
grasp_pose_dims = 6
|
| 27 |
+
num_output_qualities = 0
|
| 28 |
+
grasp_latent_dims = 4
|
| 29 |
+
|
| 30 |
+
grasp_representation_dims = (
|
| 31 |
+
grasp_pose_dims + num_output_qualities + 1
|
| 32 |
+
if num_output_qualities is not None
|
| 33 |
+
else grasp_pose_dims + 1
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
## ----------------------- Model -----------------------
|
| 37 |
+
|
| 38 |
+
dropout = 0.1 # or None
|
| 39 |
+
|
| 40 |
+
pc_encoder_config = dict(
|
| 41 |
+
type="PVCNNEncoder",
|
| 42 |
+
args=dict(
|
| 43 |
+
in_features=3,
|
| 44 |
+
n_points=pc_num_points,
|
| 45 |
+
scale_channels=0.75,
|
| 46 |
+
scale_voxel_resolution=0.75,
|
| 47 |
+
num_blocks=(1, 1, 1, 1),
|
| 48 |
+
out_channels=pc_latent_channels,
|
| 49 |
+
use_global_attention=False,
|
| 50 |
+
),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
grasp_encoder_config = dict(
|
| 54 |
+
type="ResNet1D",
|
| 55 |
+
args=dict(
|
| 56 |
+
in_features=grasp_representation_dims,
|
| 57 |
+
block_channels=(32, 64, 128, 256),
|
| 58 |
+
input_conditioning_dims=pc_latent_dims,
|
| 59 |
+
resnet_block_groups=4,
|
| 60 |
+
dropout=dropout,
|
| 61 |
+
),
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
decoder_config = dict(
|
| 65 |
+
type="ResNet1D",
|
| 66 |
+
args=dict(
|
| 67 |
+
block_channels=(32, 64, 128, 256),
|
| 68 |
+
# out_dim=grasp_pose_dims,
|
| 69 |
+
input_conditioning_dims=pc_latent_dims,
|
| 70 |
+
resnet_block_groups=4,
|
| 71 |
+
dropout=dropout,
|
| 72 |
+
),
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
loss_config = dict(
|
| 76 |
+
reconstruction_loss=dict(
|
| 77 |
+
type="GraspReconstructionLoss",
|
| 78 |
+
name="reconstruction_loss",
|
| 79 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
| 80 |
+
),
|
| 81 |
+
latent_loss=dict(
|
| 82 |
+
type="VAELatentLoss",
|
| 83 |
+
args=dict(
|
| 84 |
+
name="grasp_latent",
|
| 85 |
+
cyclical_annealing=True,
|
| 86 |
+
num_steps=max_steps,
|
| 87 |
+
num_cycles=1,
|
| 88 |
+
ratio=0.5,
|
| 89 |
+
start=1e-7,
|
| 90 |
+
stop=0.1,
|
| 91 |
+
),
|
| 92 |
+
),
|
| 93 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
| 94 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
denoiser_model = dict(
|
| 98 |
+
type="TimeConditionedResNet1D",
|
| 99 |
+
args=dict(
|
| 100 |
+
dim=grasp_latent_dims,
|
| 101 |
+
channels=1,
|
| 102 |
+
block_channels=(32, 64, 128, 256),
|
| 103 |
+
input_conditioning_dims=pc_latent_dims,
|
| 104 |
+
resnet_block_groups=4,
|
| 105 |
+
dropout=dropout,
|
| 106 |
+
is_time_conditioned=True,
|
| 107 |
+
learned_variance=False,
|
| 108 |
+
learned_sinusoidal_cond=False,
|
| 109 |
+
random_fourier_features=True,
|
| 110 |
+
# learned_sinusoidal_dim=16,
|
| 111 |
+
),
|
| 112 |
+
)
|
| 113 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
| 114 |
+
# See models/builder.py for more info.
|
| 115 |
+
model = dict(
|
| 116 |
+
vae=dict(
|
| 117 |
+
model=dict(
|
| 118 |
+
type="GraspCVAE",
|
| 119 |
+
args=dict(
|
| 120 |
+
grasp_latent_size=grasp_latent_dims,
|
| 121 |
+
pc_latent_size=pc_latent_dims,
|
| 122 |
+
pc_encoder_config=pc_encoder_config,
|
| 123 |
+
grasp_encoder_config=grasp_encoder_config,
|
| 124 |
+
decoder_config=decoder_config,
|
| 125 |
+
loss_config=loss_config,
|
| 126 |
+
num_output_qualities=num_output_qualities,
|
| 127 |
+
intermediate_feature_resolution=16,
|
| 128 |
+
),
|
| 129 |
+
),
|
| 130 |
+
ckpt_path=vae_ckpt_path,
|
| 131 |
+
),
|
| 132 |
+
ddm=dict(
|
| 133 |
+
model=dict(
|
| 134 |
+
type="GraspLatentDDM",
|
| 135 |
+
args=dict(
|
| 136 |
+
model=denoiser_model,
|
| 137 |
+
latent_in_features=grasp_latent_dims,
|
| 138 |
+
diffusion_timesteps=1000,
|
| 139 |
+
noise_scheduler_type="ddpm",
|
| 140 |
+
diffusion_loss="l2",
|
| 141 |
+
beta_schedule="linear",
|
| 142 |
+
is_conditioned=True,
|
| 143 |
+
joint_training=False,
|
| 144 |
+
denoising_loss_weight=1,
|
| 145 |
+
variance_type="fixed_large",
|
| 146 |
+
elucidated_diffusion=False,
|
| 147 |
+
beta_start=0.00005,
|
| 148 |
+
beta_end=0.001,
|
| 149 |
+
),
|
| 150 |
+
),
|
| 151 |
+
ckpt_path=ddm_ckpt_path,
|
| 152 |
+
use_vae_ema_model=True,
|
| 153 |
+
),
|
| 154 |
+
)
|
| 155 |
+
## -- Data --
|
| 156 |
+
augs_config = [
|
| 157 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
| 158 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
| 159 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
root_data_dir = "/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym"
|
| 163 |
+
object_categories = [
|
| 164 |
+
"Cup",
|
| 165 |
+
"Mug",
|
| 166 |
+
"Fork",
|
| 167 |
+
"Hat",
|
| 168 |
+
"Bottle",
|
| 169 |
+
"Bowl",
|
| 170 |
+
"Car",
|
| 171 |
+
"Donut",
|
| 172 |
+
"Laptop",
|
| 173 |
+
"MousePad",
|
| 174 |
+
"Pencil",
|
| 175 |
+
"Plate",
|
| 176 |
+
"ScrewDriver",
|
| 177 |
+
"WineBottle",
|
| 178 |
+
"Backpack",
|
| 179 |
+
"Bag",
|
| 180 |
+
"Banana",
|
| 181 |
+
"Battery",
|
| 182 |
+
"BeanBag",
|
| 183 |
+
"Bear",
|
| 184 |
+
"Book",
|
| 185 |
+
"Books",
|
| 186 |
+
"Camera",
|
| 187 |
+
"CerealBox",
|
| 188 |
+
"Cookie",
|
| 189 |
+
"Hammer",
|
| 190 |
+
"Hanger",
|
| 191 |
+
"Knife",
|
| 192 |
+
"MilkCarton",
|
| 193 |
+
"Painting",
|
| 194 |
+
"PillBottle",
|
| 195 |
+
"Plant",
|
| 196 |
+
"PowerSocket",
|
| 197 |
+
"PowerStrip",
|
| 198 |
+
"PS3",
|
| 199 |
+
"PSP",
|
| 200 |
+
"Ring",
|
| 201 |
+
"Scissors",
|
| 202 |
+
"Shampoo",
|
| 203 |
+
"Shoes",
|
| 204 |
+
"Sheep",
|
| 205 |
+
"Shower",
|
| 206 |
+
"Sink",
|
| 207 |
+
"SoapBottle",
|
| 208 |
+
"SodaCan",
|
| 209 |
+
"Spoon",
|
| 210 |
+
"Statue",
|
| 211 |
+
"Teacup",
|
| 212 |
+
"Teapot",
|
| 213 |
+
"ToiletPaper",
|
| 214 |
+
"ToyFigure",
|
| 215 |
+
"Wallet",
|
| 216 |
+
"WineGlass",
|
| 217 |
+
"Cow",
|
| 218 |
+
"Sheep",
|
| 219 |
+
"Cat",
|
| 220 |
+
"Dog",
|
| 221 |
+
"Pizza",
|
| 222 |
+
"Elephant",
|
| 223 |
+
"Donkey",
|
| 224 |
+
"RubiksCube",
|
| 225 |
+
"Tank",
|
| 226 |
+
"Truck",
|
| 227 |
+
"USBStick",
|
| 228 |
+
]
|
| 229 |
+
|
| 230 |
+
train_data = dict(
|
| 231 |
+
type="AcronymShapenetPointclouds",
|
| 232 |
+
args=dict(
|
| 233 |
+
data_root_dir=root_data_dir,
|
| 234 |
+
batch_num_points_per_pc=pc_num_points,
|
| 235 |
+
batch_num_grasps_per_pc=100,
|
| 236 |
+
rotation_repr="mrp",
|
| 237 |
+
augs_config=augs_config,
|
| 238 |
+
split="train",
|
| 239 |
+
batch_failed_grasps_ratio=0,
|
| 240 |
+
use_dataset_statistics_for_norm=False,
|
| 241 |
+
filter_categories=object_categories,
|
| 242 |
+
load_fixed_subset_grasps_per_obj=None,
|
| 243 |
+
num_repeat_dataset=10,
|
| 244 |
+
),
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
data = dict(
|
| 248 |
+
train=train_data,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Patch: Mesh Categories. Used for simulation
|
| 252 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
| 253 |
+
mesh_root = (
|
| 254 |
+
mesh_root
|
| 255 |
+
if os.path.exists(mesh_root)
|
| 256 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
| 257 |
+
)
|
| 258 |
+
mesh_categories = object_categories
|
| 259 |
+
|
| 260 |
+
## -------------------- Trainer --------------------
|
| 261 |
+
## Logger
|
| 262 |
+
logger = dict(type="WandbLogger", project="full-pc-ema-63c")
|
| 263 |
+
|
| 264 |
+
optimizer = dict(
|
| 265 |
+
initial_lr=0.001,
|
| 266 |
+
scheduler=dict(
|
| 267 |
+
type="MultiStepLR",
|
| 268 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
| 269 |
+
),
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
trainer = dict(
|
| 273 |
+
max_steps=max_steps,
|
| 274 |
+
batch_size=batch_size,
|
| 275 |
+
num_workers=num_workers_per_gpu * num_gpus,
|
| 276 |
+
accelerator="gpu",
|
| 277 |
+
devices=num_gpus,
|
| 278 |
+
strategy="ddp",
|
| 279 |
+
logger=logger,
|
| 280 |
+
log_every_n_steps=100,
|
| 281 |
+
optimizer=optimizer,
|
| 282 |
+
resume_training_from_last=resume_training_from_last,
|
| 283 |
+
check_val_every_n_epoch=1,
|
| 284 |
+
ema=dict(
|
| 285 |
+
beta=0.990,
|
| 286 |
+
update_after_step=1000,
|
| 287 |
+
),
|
| 288 |
+
deterministic=True,
|
| 289 |
+
)
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/checkpoints/last.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7c6759f52c2fe0895bd54fee24425f720fa4d67fd8454e25cb6e338a03b05d7
|
| 3 |
+
size 40291309
|
checkpoints/generation/fpc_1a_latentc3_z4_pc64/vae/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
## -------------------- Most frequently changed params here --------------------
|
| 4 |
+
|
| 5 |
+
resume_training_from_last = True
|
| 6 |
+
|
| 7 |
+
max_steps = 180000
|
| 8 |
+
batch_size = 10
|
| 9 |
+
|
| 10 |
+
num_gpus = 1
|
| 11 |
+
num_workers_per_gpu = 7
|
| 12 |
+
|
| 13 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
| 14 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
| 15 |
+
ddm_ckpt_path = None
|
| 16 |
+
|
| 17 |
+
max_scenes = None
|
| 18 |
+
|
| 19 |
+
## -------------------- Inputs/Shapes ------------------------
|
| 20 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
| 21 |
+
|
| 22 |
+
pc_num_points = 1024
|
| 23 |
+
pc_latent_dims = 64
|
| 24 |
+
pc_latent_channels = 3
|
| 25 |
+
|
| 26 |
+
grasp_pose_dims = 6
|
| 27 |
+
num_output_qualities = 0
|
| 28 |
+
grasp_latent_dims = 4
|
| 29 |
+
|
| 30 |
+
grasp_representation_dims = (
|
| 31 |
+
grasp_pose_dims + num_output_qualities + 1
|
| 32 |
+
if num_output_qualities is not None
|
| 33 |
+
else grasp_pose_dims + 1
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
## ----------------------- Model -----------------------
|
| 37 |
+
|
| 38 |
+
dropout = 0.1 # or None
|
| 39 |
+
|
| 40 |
+
pc_encoder_config = dict(
|
| 41 |
+
type="PVCNNEncoder",
|
| 42 |
+
args=dict(
|
| 43 |
+
in_features=3,
|
| 44 |
+
n_points=pc_num_points,
|
| 45 |
+
scale_channels=0.75,
|
| 46 |
+
scale_voxel_resolution=0.75,
|
| 47 |
+
num_blocks=(1, 1, 1, 1),
|
| 48 |
+
out_channels=pc_latent_channels,
|
| 49 |
+
use_global_attention=False,
|
| 50 |
+
),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
grasp_encoder_config = dict(
|
| 54 |
+
type="ResNet1D",
|
| 55 |
+
args=dict(
|
| 56 |
+
in_features=grasp_representation_dims,
|
| 57 |
+
block_channels=(32, 64, 128, 256),
|
| 58 |
+
input_conditioning_dims=pc_latent_dims,
|
| 59 |
+
resnet_block_groups=4,
|
| 60 |
+
dropout=dropout,
|
| 61 |
+
),
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
decoder_config = dict(
|
| 65 |
+
type="ResNet1D",
|
| 66 |
+
args=dict(
|
| 67 |
+
block_channels=(32, 64, 128, 256),
|
| 68 |
+
# out_dim=grasp_pose_dims,
|
| 69 |
+
input_conditioning_dims=pc_latent_dims,
|
| 70 |
+
resnet_block_groups=4,
|
| 71 |
+
dropout=dropout,
|
| 72 |
+
),
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
loss_config = dict(
|
| 76 |
+
reconstruction_loss=dict(
|
| 77 |
+
type="GraspReconstructionLoss",
|
| 78 |
+
name="reconstruction_loss",
|
| 79 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
| 80 |
+
),
|
| 81 |
+
latent_loss=dict(
|
| 82 |
+
type="VAELatentLoss",
|
| 83 |
+
args=dict(
|
| 84 |
+
name="grasp_latent",
|
| 85 |
+
cyclical_annealing=True,
|
| 86 |
+
num_steps=max_steps,
|
| 87 |
+
num_cycles=1,
|
| 88 |
+
ratio=0.5,
|
| 89 |
+
start=1e-7,
|
| 90 |
+
stop=0.1,
|
| 91 |
+
),
|
| 92 |
+
),
|
| 93 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
| 94 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
denoiser_model = dict(
|
| 98 |
+
type="TimeConditionedResNet1D",
|
| 99 |
+
args=dict(
|
| 100 |
+
dim=grasp_latent_dims,
|
| 101 |
+
channels=1,
|
| 102 |
+
block_channels=(32, 64, 128, 256),
|
| 103 |
+
input_conditioning_dims=pc_latent_dims,
|
| 104 |
+
resnet_block_groups=4,
|
| 105 |
+
dropout=dropout,
|
| 106 |
+
is_time_conditioned=True,
|
| 107 |
+
learned_variance=False,
|
| 108 |
+
learned_sinusoidal_cond=False,
|
| 109 |
+
random_fourier_features=True,
|
| 110 |
+
# learned_sinusoidal_dim=16,
|
| 111 |
+
),
|
| 112 |
+
)
|
| 113 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
| 114 |
+
# See models/builder.py for more info.
|
| 115 |
+
model = dict(
|
| 116 |
+
vae=dict(
|
| 117 |
+
model=dict(
|
| 118 |
+
type="GraspCVAE",
|
| 119 |
+
args=dict(
|
| 120 |
+
grasp_latent_size=grasp_latent_dims,
|
| 121 |
+
pc_latent_size=pc_latent_dims,
|
| 122 |
+
pc_encoder_config=pc_encoder_config,
|
| 123 |
+
grasp_encoder_config=grasp_encoder_config,
|
| 124 |
+
decoder_config=decoder_config,
|
| 125 |
+
loss_config=loss_config,
|
| 126 |
+
num_output_qualities=num_output_qualities,
|
| 127 |
+
intermediate_feature_resolution=16,
|
| 128 |
+
),
|
| 129 |
+
),
|
| 130 |
+
ckpt_path=vae_ckpt_path,
|
| 131 |
+
),
|
| 132 |
+
ddm=dict(
|
| 133 |
+
model=dict(
|
| 134 |
+
type="GraspLatentDDM",
|
| 135 |
+
args=dict(
|
| 136 |
+
model=denoiser_model,
|
| 137 |
+
latent_in_features=grasp_latent_dims,
|
| 138 |
+
diffusion_timesteps=1000,
|
| 139 |
+
noise_scheduler_type="ddpm",
|
| 140 |
+
diffusion_loss="l2",
|
| 141 |
+
beta_schedule="linear",
|
| 142 |
+
is_conditioned=True,
|
| 143 |
+
joint_training=False,
|
| 144 |
+
denoising_loss_weight=1,
|
| 145 |
+
variance_type="fixed_large",
|
| 146 |
+
elucidated_diffusion=False,
|
| 147 |
+
beta_start=0.00005,
|
| 148 |
+
beta_end=0.001,
|
| 149 |
+
),
|
| 150 |
+
),
|
| 151 |
+
ckpt_path=ddm_ckpt_path,
|
| 152 |
+
use_vae_ema_model=True,
|
| 153 |
+
),
|
| 154 |
+
)
|
| 155 |
+
## -- Data --
|
| 156 |
+
augs_config = [
|
| 157 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
| 158 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
| 159 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
root_data_dir = "/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym"
|
| 163 |
+
object_categories = [
|
| 164 |
+
"Cup",
|
| 165 |
+
"Mug",
|
| 166 |
+
"Fork",
|
| 167 |
+
"Hat",
|
| 168 |
+
"Bottle",
|
| 169 |
+
"Bowl",
|
| 170 |
+
"Car",
|
| 171 |
+
"Donut",
|
| 172 |
+
"Laptop",
|
| 173 |
+
"MousePad",
|
| 174 |
+
"Pencil",
|
| 175 |
+
"Plate",
|
| 176 |
+
"ScrewDriver",
|
| 177 |
+
"WineBottle",
|
| 178 |
+
"Backpack",
|
| 179 |
+
"Bag",
|
| 180 |
+
"Banana",
|
| 181 |
+
"Battery",
|
| 182 |
+
"BeanBag",
|
| 183 |
+
"Bear",
|
| 184 |
+
"Book",
|
| 185 |
+
"Books",
|
| 186 |
+
"Camera",
|
| 187 |
+
"CerealBox",
|
| 188 |
+
"Cookie",
|
| 189 |
+
"Hammer",
|
| 190 |
+
"Hanger",
|
| 191 |
+
"Knife",
|
| 192 |
+
"MilkCarton",
|
| 193 |
+
"Painting",
|
| 194 |
+
"PillBottle",
|
| 195 |
+
"Plant",
|
| 196 |
+
"PowerSocket",
|
| 197 |
+
"PowerStrip",
|
| 198 |
+
"PS3",
|
| 199 |
+
"PSP",
|
| 200 |
+
"Ring",
|
| 201 |
+
"Scissors",
|
| 202 |
+
"Shampoo",
|
| 203 |
+
"Shoes",
|
| 204 |
+
"Sheep",
|
| 205 |
+
"Shower",
|
| 206 |
+
"Sink",
|
| 207 |
+
"SoapBottle",
|
| 208 |
+
"SodaCan",
|
| 209 |
+
"Spoon",
|
| 210 |
+
"Statue",
|
| 211 |
+
"Teacup",
|
| 212 |
+
"Teapot",
|
| 213 |
+
"ToiletPaper",
|
| 214 |
+
"ToyFigure",
|
| 215 |
+
"Wallet",
|
| 216 |
+
"WineGlass",
|
| 217 |
+
"Cow",
|
| 218 |
+
"Sheep",
|
| 219 |
+
"Cat",
|
| 220 |
+
"Dog",
|
| 221 |
+
"Pizza",
|
| 222 |
+
"Elephant",
|
| 223 |
+
"Donkey",
|
| 224 |
+
"RubiksCube",
|
| 225 |
+
"Tank",
|
| 226 |
+
"Truck",
|
| 227 |
+
"USBStick",
|
| 228 |
+
]
|
| 229 |
+
|
| 230 |
+
train_data = dict(
|
| 231 |
+
type="AcronymShapenetPointclouds",
|
| 232 |
+
args=dict(
|
| 233 |
+
data_root_dir=root_data_dir,
|
| 234 |
+
batch_num_points_per_pc=pc_num_points,
|
| 235 |
+
batch_num_grasps_per_pc=100,
|
| 236 |
+
rotation_repr="mrp",
|
| 237 |
+
augs_config=augs_config,
|
| 238 |
+
split="train",
|
| 239 |
+
batch_failed_grasps_ratio=0,
|
| 240 |
+
use_dataset_statistics_for_norm=False,
|
| 241 |
+
filter_categories=object_categories,
|
| 242 |
+
load_fixed_subset_grasps_per_obj=None,
|
| 243 |
+
num_repeat_dataset=10,
|
| 244 |
+
),
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
data = dict(
|
| 248 |
+
train=train_data,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Patch: Mesh Categories. Used for simulation
|
| 252 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
| 253 |
+
mesh_root = (
|
| 254 |
+
mesh_root
|
| 255 |
+
if os.path.exists(mesh_root)
|
| 256 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
| 257 |
+
)
|
| 258 |
+
mesh_categories = object_categories
|
| 259 |
+
|
| 260 |
+
## -------------------- Trainer --------------------
|
| 261 |
+
## Logger
|
| 262 |
+
logger = dict(type="WandbLogger", project="full-pc-ema-63c")
|
| 263 |
+
|
| 264 |
+
optimizer = dict(
|
| 265 |
+
initial_lr=0.001,
|
| 266 |
+
scheduler=dict(
|
| 267 |
+
type="MultiStepLR",
|
| 268 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
| 269 |
+
),
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
trainer = dict(
|
| 273 |
+
max_steps=max_steps,
|
| 274 |
+
batch_size=batch_size,
|
| 275 |
+
num_workers=num_workers_per_gpu * num_gpus,
|
| 276 |
+
accelerator="gpu",
|
| 277 |
+
devices=num_gpus,
|
| 278 |
+
strategy="ddp",
|
| 279 |
+
logger=logger,
|
| 280 |
+
log_every_n_steps=100,
|
| 281 |
+
optimizer=optimizer,
|
| 282 |
+
resume_training_from_last=resume_training_from_last,
|
| 283 |
+
check_val_every_n_epoch=1,
|
| 284 |
+
ema=dict(
|
| 285 |
+
beta=0.990,
|
| 286 |
+
update_after_step=1000,
|
| 287 |
+
),
|
| 288 |
+
deterministic=True,
|
| 289 |
+
)
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/checkpoints/last.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1cb9d2683e0d750df0c163b4ad4d5d9288ec9d7bb2b4246d11f90250dd856f28
|
| 3 |
+
size 25175359
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/ddm/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
| 4 |
+
grasp_pose_dims = 6
|
| 5 |
+
num_output_qualities = 0
|
| 6 |
+
|
| 7 |
+
grasp_representation_dims = (
|
| 8 |
+
grasp_pose_dims + num_output_qualities + 1
|
| 9 |
+
if num_output_qualities is not None
|
| 10 |
+
else grasp_pose_dims + 1
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
grasp_latent_dims = 16
|
| 14 |
+
pc_latent_dims = 256
|
| 15 |
+
pc_latent_channels = 3
|
| 16 |
+
|
| 17 |
+
pc_num_points = 1024
|
| 18 |
+
batch_num_scenes = 10
|
| 19 |
+
# max_scenes = 10
|
| 20 |
+
|
| 21 |
+
# Max batch steps or epochs. Only one of them should be defined. If both, steps will considered.
|
| 22 |
+
max_steps = 180000
|
| 23 |
+
max_epochs = None
|
| 24 |
+
|
| 25 |
+
## Checkpoints:
|
| 26 |
+
# If to auto check the exp directory and resume from last saved checkpoints
|
| 27 |
+
resume_training_from_last = True
|
| 28 |
+
|
| 29 |
+
# TODO: Not passed in config.
|
| 30 |
+
save_ckpt_every_n_epochs = 50
|
| 31 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
| 32 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
| 33 |
+
ddm_ckpt_path = None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## -- Model --
|
| 37 |
+
dropout = 0.1 # or None
|
| 38 |
+
|
| 39 |
+
pc_encoder_config = dict(
|
| 40 |
+
type="PVCNNEncoder",
|
| 41 |
+
args=dict(
|
| 42 |
+
in_features=3,
|
| 43 |
+
n_points=pc_num_points,
|
| 44 |
+
scale_channels=0.75,
|
| 45 |
+
scale_voxel_resolution=0.75,
|
| 46 |
+
num_blocks=(1, 1, 1, 1),
|
| 47 |
+
out_channels=pc_latent_channels,
|
| 48 |
+
use_global_attention=False,
|
| 49 |
+
),
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
grasp_encoder_config = dict(
|
| 53 |
+
type="ResNet1D",
|
| 54 |
+
args=dict(
|
| 55 |
+
in_features=grasp_representation_dims,
|
| 56 |
+
block_channels=(32, 64, 128, 256),
|
| 57 |
+
input_conditioning_dims=pc_latent_dims,
|
| 58 |
+
resnet_block_groups=4,
|
| 59 |
+
dropout=dropout,
|
| 60 |
+
),
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
decoder_config = dict(
|
| 64 |
+
type="ResNet1D",
|
| 65 |
+
args=dict(
|
| 66 |
+
block_channels=(32, 64, 128, 256),
|
| 67 |
+
# out_dim=grasp_pose_dims,
|
| 68 |
+
input_conditioning_dims=pc_latent_dims,
|
| 69 |
+
resnet_block_groups=4,
|
| 70 |
+
dropout=dropout,
|
| 71 |
+
),
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
loss_config = dict(
|
| 75 |
+
reconstruction_loss=dict(
|
| 76 |
+
type="GraspReconstructionLoss",
|
| 77 |
+
name="reconstruction_loss",
|
| 78 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
| 79 |
+
),
|
| 80 |
+
latent_loss=dict(
|
| 81 |
+
type="VAELatentLoss",
|
| 82 |
+
args=dict(
|
| 83 |
+
name="grasp_latent",
|
| 84 |
+
cyclical_annealing=True,
|
| 85 |
+
num_steps=max_steps,
|
| 86 |
+
num_cycles=1,
|
| 87 |
+
ratio=0.5,
|
| 88 |
+
start=1e-7,
|
| 89 |
+
stop=0.1,
|
| 90 |
+
),
|
| 91 |
+
),
|
| 92 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
| 93 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
denoiser_model = dict(
|
| 97 |
+
type="TimeConditionedResNet1D",
|
| 98 |
+
args=dict(
|
| 99 |
+
dim=grasp_latent_dims,
|
| 100 |
+
channels=1,
|
| 101 |
+
block_channels=(32, 64, 128, 256),
|
| 102 |
+
input_conditioning_dims=pc_latent_dims,
|
| 103 |
+
resnet_block_groups=4,
|
| 104 |
+
dropout=dropout,
|
| 105 |
+
is_time_conditioned=True,
|
| 106 |
+
learned_variance=False,
|
| 107 |
+
learned_sinusoidal_cond=False,
|
| 108 |
+
random_fourier_features=True,
|
| 109 |
+
# learned_sinusoidal_dim=16,
|
| 110 |
+
),
|
| 111 |
+
)
|
| 112 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
| 113 |
+
# See models/builder.py for more info.
|
| 114 |
+
models = dict(
|
| 115 |
+
vae=dict(
|
| 116 |
+
model=dict(
|
| 117 |
+
type="GraspCVAE",
|
| 118 |
+
args=dict(
|
| 119 |
+
grasp_latent_size=grasp_latent_dims,
|
| 120 |
+
pc_latent_size=pc_latent_dims,
|
| 121 |
+
pc_encoder_config=pc_encoder_config,
|
| 122 |
+
grasp_encoder_config=grasp_encoder_config,
|
| 123 |
+
decoder_config=decoder_config,
|
| 124 |
+
loss_config=loss_config,
|
| 125 |
+
num_output_qualities=num_output_qualities,
|
| 126 |
+
intermediate_feature_resolution=16,
|
| 127 |
+
),
|
| 128 |
+
),
|
| 129 |
+
ckpt_path=vae_ckpt_path,
|
| 130 |
+
),
|
| 131 |
+
ddm=dict(
|
| 132 |
+
model=dict(
|
| 133 |
+
type="GraspLatentDDM",
|
| 134 |
+
args=dict(
|
| 135 |
+
model=denoiser_model,
|
| 136 |
+
latent_in_features=grasp_latent_dims,
|
| 137 |
+
diffusion_timesteps=1000,
|
| 138 |
+
noise_scheduler_type="ddpm",
|
| 139 |
+
diffusion_loss="l2",
|
| 140 |
+
beta_schedule="linear",
|
| 141 |
+
is_conditioned=True,
|
| 142 |
+
joint_training=False,
|
| 143 |
+
denoising_loss_weight=1,
|
| 144 |
+
variance_type="fixed_large",
|
| 145 |
+
elucidated_diffusion=False,
|
| 146 |
+
beta_start=0.00005,
|
| 147 |
+
beta_end=0.001,
|
| 148 |
+
),
|
| 149 |
+
),
|
| 150 |
+
ckpt_path=ddm_ckpt_path,
|
| 151 |
+
),
|
| 152 |
+
)
|
| 153 |
+
## -- Data --
|
| 154 |
+
augs_config = [
|
| 155 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
| 156 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
| 157 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
root_data_dir = (
|
| 161 |
+
"/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym/renders/objects_filtered_grasps_63cat_8k/"
|
| 162 |
+
)
|
| 163 |
+
camera_json = "data/cameras/camera_d435i_dummy.json"
|
| 164 |
+
max_scenes = None
|
| 165 |
+
train_data = dict(
|
| 166 |
+
type="AcronymPartialPointclouds",
|
| 167 |
+
args=dict(
|
| 168 |
+
data_root_dir=root_data_dir,
|
| 169 |
+
max_scenes=max_scenes,
|
| 170 |
+
camera_json=camera_json,
|
| 171 |
+
num_points_per_pc=pc_num_points,
|
| 172 |
+
num_grasps_per_obj=100,
|
| 173 |
+
rotation_repr="mrp",
|
| 174 |
+
augs_config=augs_config,
|
| 175 |
+
split="train",
|
| 176 |
+
depth_px_scale=10000,
|
| 177 |
+
scene_prefix="scene_",
|
| 178 |
+
min_usable_pc_points=1024,
|
| 179 |
+
preempt_load_data=True,
|
| 180 |
+
use_failed_grasps=False,
|
| 181 |
+
failed_grasp_ratio=0.3,
|
| 182 |
+
load_fixed_grasp_transforms=None,
|
| 183 |
+
is_input_dataset_normalized=False,
|
| 184 |
+
),
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
data = dict(
|
| 188 |
+
train=train_data,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Patch: Mesh Categories. Used for simulation
|
| 192 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
| 193 |
+
mesh_root = (
|
| 194 |
+
mesh_root
|
| 195 |
+
if os.path.exists(mesh_root)
|
| 196 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
| 197 |
+
)
|
| 198 |
+
mesh_categories = ["Cup", "Mug", "Fork", "Hat", "Bottle", "Bowl", "Car", "Donut", "Laptop", "MousePad", "Pencil", "Plate", "ScrewDriver", "WineBottle", "Backpack", "Bag", "Banana", "Battery", "BeanBag", "Bear", "Book", "Books", "Camera", "CerealBox", "Cookie", "Hammer", "Hanger", "Knife", "MilkCarton", "Painting", "PillBottle", "Plant", "PowerSocket", "PowerStrip", "PS3", "PSP", "Ring", "Scissors", "Shampoo", "Shoes", "Sheep", "Shower", "Sink", "SoapBottle", "SodaCan", "Spoon", "Statue", "Teacup", "Teapot", "ToiletPaper", "ToyFigure", "Wallet", "WineGlass", "Cow", "Sheep", "Cat", "Dog", "Pizza", "Elephant", "Donkey", "RubiksCube", "Tank", "Truck", "USBStick"]
|
| 199 |
+
|
| 200 |
+
## Logger
|
| 201 |
+
logger = dict(type="WandbLogger", project="partial-pc-baseline")
|
| 202 |
+
|
| 203 |
+
optimizer = dict(
|
| 204 |
+
initial_lr=0.001,
|
| 205 |
+
scheduler=dict(
|
| 206 |
+
type="MultiStepLR",
|
| 207 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
| 208 |
+
),
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
num_gpus = 1
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
steps_or_epochs = (
|
| 215 |
+
dict(max_steps=max_steps) if max_steps is not None else dict(max_epochs=max_epochs)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
train = dict(
|
| 219 |
+
**steps_or_epochs,
|
| 220 |
+
batch_size=batch_num_scenes,
|
| 221 |
+
num_workers=7 * num_gpus,
|
| 222 |
+
accelerator="gpu",
|
| 223 |
+
devices=num_gpus,
|
| 224 |
+
strategy="ddp",
|
| 225 |
+
)
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/checkpoints/last.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f0e017b0790fcb742797dbd6c3a31cb9c48ba62020ebffd08408c3f395d44e7
|
| 3 |
+
size 20985977
|
checkpoints/generation/ppc_1a_partial_63cat8k_filtered_latentc3_z16_pc256_180k/vae/exp16e3_partial_63cat8k_filtered_latentc3_z16_pc256_simple_180k.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# Input/Output: grasp representation [mrp(3), t(3), cls_success(1), qualities(4)]
|
| 4 |
+
grasp_pose_dims = 6
|
| 5 |
+
num_output_qualities = 0
|
| 6 |
+
|
| 7 |
+
grasp_representation_dims = (
|
| 8 |
+
grasp_pose_dims + num_output_qualities + 1
|
| 9 |
+
if num_output_qualities is not None
|
| 10 |
+
else grasp_pose_dims + 1
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
grasp_latent_dims = 16
|
| 14 |
+
pc_latent_dims = 256
|
| 15 |
+
pc_latent_channels = 3
|
| 16 |
+
|
| 17 |
+
pc_num_points = 1024
|
| 18 |
+
batch_num_scenes = 10
|
| 19 |
+
# max_scenes = 10
|
| 20 |
+
|
| 21 |
+
# Max batch steps or epochs. Only one of them should be defined. If both, steps will considered.
|
| 22 |
+
max_steps = 180000
|
| 23 |
+
max_epochs = None
|
| 24 |
+
|
| 25 |
+
## Checkpoints:
|
| 26 |
+
# If to auto check the exp directory and resume from last saved checkpoints
|
| 27 |
+
resume_training_from_last = True
|
| 28 |
+
|
| 29 |
+
# TODO: Not passed in config.
|
| 30 |
+
save_ckpt_every_n_epochs = 50
|
| 31 |
+
# During training, if a ckpt is provided here, it overrides resume_training_from_last and instead resumes training from this ckpt
|
| 32 |
+
vae_ckpt_path = None # "output/boilerplate_kldanneal_c0.1/vae/checkpoints/last.ckpt"
|
| 33 |
+
ddm_ckpt_path = None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## -- Model --
|
| 37 |
+
dropout = 0.1 # or None
|
| 38 |
+
|
| 39 |
+
pc_encoder_config = dict(
|
| 40 |
+
type="PVCNNEncoder",
|
| 41 |
+
args=dict(
|
| 42 |
+
in_features=3,
|
| 43 |
+
n_points=pc_num_points,
|
| 44 |
+
scale_channels=0.75,
|
| 45 |
+
scale_voxel_resolution=0.75,
|
| 46 |
+
num_blocks=(1, 1, 1, 1),
|
| 47 |
+
out_channels=pc_latent_channels,
|
| 48 |
+
use_global_attention=False,
|
| 49 |
+
),
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
grasp_encoder_config = dict(
|
| 53 |
+
type="ResNet1D",
|
| 54 |
+
args=dict(
|
| 55 |
+
in_features=grasp_representation_dims,
|
| 56 |
+
block_channels=(32, 64, 128, 256),
|
| 57 |
+
input_conditioning_dims=pc_latent_dims,
|
| 58 |
+
resnet_block_groups=4,
|
| 59 |
+
dropout=dropout,
|
| 60 |
+
),
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
decoder_config = dict(
|
| 64 |
+
type="ResNet1D",
|
| 65 |
+
args=dict(
|
| 66 |
+
block_channels=(32, 64, 128, 256),
|
| 67 |
+
# out_dim=grasp_pose_dims,
|
| 68 |
+
input_conditioning_dims=pc_latent_dims,
|
| 69 |
+
resnet_block_groups=4,
|
| 70 |
+
dropout=dropout,
|
| 71 |
+
),
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
loss_config = dict(
|
| 75 |
+
reconstruction_loss=dict(
|
| 76 |
+
type="GraspReconstructionLoss",
|
| 77 |
+
name="reconstruction_loss",
|
| 78 |
+
args=dict(translation_weight=1, rotation_weight=1),
|
| 79 |
+
),
|
| 80 |
+
latent_loss=dict(
|
| 81 |
+
type="VAELatentLoss",
|
| 82 |
+
args=dict(
|
| 83 |
+
name="grasp_latent",
|
| 84 |
+
cyclical_annealing=True,
|
| 85 |
+
num_steps=max_steps,
|
| 86 |
+
num_cycles=1,
|
| 87 |
+
ratio=0.5,
|
| 88 |
+
start=1e-7,
|
| 89 |
+
stop=0.1,
|
| 90 |
+
),
|
| 91 |
+
),
|
| 92 |
+
classification_loss=dict(type="ClassificationLoss", args=dict(weight=0.1)),
|
| 93 |
+
# quality_loss=dict(type="QualityLoss", args=dict(weight=0.1)),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
denoiser_model = dict(
|
| 97 |
+
type="TimeConditionedResNet1D",
|
| 98 |
+
args=dict(
|
| 99 |
+
dim=grasp_latent_dims,
|
| 100 |
+
channels=1,
|
| 101 |
+
block_channels=(32, 64, 128, 256),
|
| 102 |
+
input_conditioning_dims=pc_latent_dims,
|
| 103 |
+
resnet_block_groups=4,
|
| 104 |
+
dropout=dropout,
|
| 105 |
+
is_time_conditioned=True,
|
| 106 |
+
learned_variance=False,
|
| 107 |
+
learned_sinusoidal_cond=False,
|
| 108 |
+
random_fourier_features=True,
|
| 109 |
+
# learned_sinusoidal_dim=16,
|
| 110 |
+
),
|
| 111 |
+
)
|
| 112 |
+
# Use `model` for single module to be built. If a list of modules are required to be built, use `models` to make sure the outer
|
| 113 |
+
# See models/builder.py for more info.
|
| 114 |
+
models = dict(
|
| 115 |
+
vae=dict(
|
| 116 |
+
model=dict(
|
| 117 |
+
type="GraspCVAE",
|
| 118 |
+
args=dict(
|
| 119 |
+
grasp_latent_size=grasp_latent_dims,
|
| 120 |
+
pc_latent_size=pc_latent_dims,
|
| 121 |
+
pc_encoder_config=pc_encoder_config,
|
| 122 |
+
grasp_encoder_config=grasp_encoder_config,
|
| 123 |
+
decoder_config=decoder_config,
|
| 124 |
+
loss_config=loss_config,
|
| 125 |
+
num_output_qualities=num_output_qualities,
|
| 126 |
+
intermediate_feature_resolution=16,
|
| 127 |
+
),
|
| 128 |
+
),
|
| 129 |
+
ckpt_path=vae_ckpt_path,
|
| 130 |
+
),
|
| 131 |
+
ddm=dict(
|
| 132 |
+
model=dict(
|
| 133 |
+
type="GraspLatentDDM",
|
| 134 |
+
args=dict(
|
| 135 |
+
model=denoiser_model,
|
| 136 |
+
latent_in_features=grasp_latent_dims,
|
| 137 |
+
diffusion_timesteps=1000,
|
| 138 |
+
noise_scheduler_type="ddpm",
|
| 139 |
+
diffusion_loss="l2",
|
| 140 |
+
beta_schedule="linear",
|
| 141 |
+
is_conditioned=True,
|
| 142 |
+
joint_training=False,
|
| 143 |
+
denoising_loss_weight=1,
|
| 144 |
+
variance_type="fixed_large",
|
| 145 |
+
elucidated_diffusion=False,
|
| 146 |
+
beta_start=0.00005,
|
| 147 |
+
beta_end=0.001,
|
| 148 |
+
),
|
| 149 |
+
),
|
| 150 |
+
ckpt_path=ddm_ckpt_path,
|
| 151 |
+
),
|
| 152 |
+
)
|
| 153 |
+
## -- Data --
|
| 154 |
+
augs_config = [
|
| 155 |
+
dict(type="RandomRotation", args=dict(p=0.5, max_angle=180, is_degree=True)),
|
| 156 |
+
dict(type="PointcloudJitter", args=dict(p=1, sigma=0.005, clip=0.005)),
|
| 157 |
+
dict(type="RandomPointcloudDropout", args=dict(p=0.5, max_dropout_ratio=0.4)),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
root_data_dir = (
|
| 161 |
+
"/mnt/irisgpfs/projects/mis-urso/grasp/data/acronym/renders/objects_filtered_grasps_63cat_8k/"
|
| 162 |
+
)
|
| 163 |
+
camera_json = "data/cameras/camera_d435i_dummy.json"
|
| 164 |
+
max_scenes = None
|
| 165 |
+
train_data = dict(
|
| 166 |
+
type="AcronymPartialPointclouds",
|
| 167 |
+
args=dict(
|
| 168 |
+
data_root_dir=root_data_dir,
|
| 169 |
+
max_scenes=max_scenes,
|
| 170 |
+
camera_json=camera_json,
|
| 171 |
+
num_points_per_pc=pc_num_points,
|
| 172 |
+
num_grasps_per_obj=100,
|
| 173 |
+
rotation_repr="mrp",
|
| 174 |
+
augs_config=augs_config,
|
| 175 |
+
split="train",
|
| 176 |
+
depth_px_scale=10000,
|
| 177 |
+
scene_prefix="scene_",
|
| 178 |
+
min_usable_pc_points=1024,
|
| 179 |
+
preempt_load_data=True,
|
| 180 |
+
use_failed_grasps=False,
|
| 181 |
+
failed_grasp_ratio=0.3,
|
| 182 |
+
load_fixed_grasp_transforms=None,
|
| 183 |
+
is_input_dataset_normalized=False,
|
| 184 |
+
),
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
data = dict(
|
| 188 |
+
train=train_data,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Patch: Mesh Categories. Used for simulation
|
| 192 |
+
mesh_root = "/home/kuldeep/phd/data/ACRONYM/"
|
| 193 |
+
mesh_root = (
|
| 194 |
+
mesh_root
|
| 195 |
+
if os.path.exists(mesh_root)
|
| 196 |
+
else "/mnt/irisgpfs/users/kbarad/grasp/data/acronym"
|
| 197 |
+
)
|
| 198 |
+
mesh_categories = ["Cup", "Mug", "Fork", "Hat", "Bottle", "Bowl", "Car", "Donut", "Laptop", "MousePad", "Pencil", "Plate", "ScrewDriver", "WineBottle", "Backpack", "Bag", "Banana", "Battery", "BeanBag", "Bear", "Book", "Books", "Camera", "CerealBox", "Cookie", "Hammer", "Hanger", "Knife", "MilkCarton", "Painting", "PillBottle", "Plant", "PowerSocket", "PowerStrip", "PS3", "PSP", "Ring", "Scissors", "Shampoo", "Shoes", "Sheep", "Shower", "Sink", "SoapBottle", "SodaCan", "Spoon", "Statue", "Teacup", "Teapot", "ToiletPaper", "ToyFigure", "Wallet", "WineGlass", "Cow", "Sheep", "Cat", "Dog", "Pizza", "Elephant", "Donkey", "RubiksCube", "Tank", "Truck", "USBStick"]
|
| 199 |
+
|
| 200 |
+
## Logger
|
| 201 |
+
logger = dict(type="WandbLogger", project="partial-pc-baseline")
|
| 202 |
+
|
| 203 |
+
optimizer = dict(
|
| 204 |
+
initial_lr=0.001,
|
| 205 |
+
scheduler=dict(
|
| 206 |
+
type="MultiStepLR",
|
| 207 |
+
args=dict(milestones=[int(max_steps / 3), int(2 * max_steps / 3)], gamma=0.1),
|
| 208 |
+
),
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
num_gpus = 1
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
steps_or_epochs = (
|
| 215 |
+
dict(max_steps=max_steps) if max_steps is not None else dict(max_epochs=max_epochs)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
train = dict(
|
| 219 |
+
**steps_or_epochs,
|
| 220 |
+
batch_size=batch_num_scenes,
|
| 221 |
+
num_workers=7 * num_gpus,
|
| 222 |
+
accelerator="gpu",
|
| 223 |
+
devices=num_gpus,
|
| 224 |
+
strategy="ddp",
|
| 225 |
+
)
|