kbsooo commited on
Commit
8c2abf1
·
verified ·
1 Parent(s): 97dc570

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -130
README.md CHANGED
@@ -1,142 +1,104 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
@@ -144,56 +106,38 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - ds4sd/DocLayNet-v1.2
5
+ base_model:
6
+ - microsoft/layoutlmv3-base
7
  ---
8
 
9
+ # Model Card for kbsooo/layoutlmv3_finetuned_doclaynet
 
 
 
 
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
+ This model is a fine-tuned version of [LayoutLMv3](https://huggingface.co/microsoft/layoutlmv3-base) for token classification on the DocLayNet dataset.
16
+ It is designed to classify each token in a document image based on both textual and layout information.
 
17
 
18
+ - **Developed by:** kbsooo
19
+ - **Model type:** LayoutLMv3ForTokenClassification
20
+ - **Language(s) (NLP):** Korean (document-oriented)
21
+ - **License:** Check DocLayNet and LayoutLMv3 licenses
22
+ - **Finetuned from model:** microsoft/layoutlmv3-base
 
 
23
 
24
+ ### Model Sources
25
 
26
+ - **Repository:** [Hugging Face Model Hub](https://huggingface.co/kbsooo/layoutlmv3_finetuned_doclaynet)
27
+ - **Paper (optional):** [LayoutLMv3 Paper](https://arxiv.org/abs/2112.01041)
 
 
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ This model can be used for:
 
 
34
 
35
+ - Token classification in document images (e.g., identifying headings, paragraphs, tables, images, lists)
36
+ - Document understanding tasks where layout + text information is important
37
 
38
+ ### Downstream Use
39
 
40
+ - Can be integrated into pipelines for document information extraction
41
+ - Useful for document analysis applications: invoice parsing, form processing, etc.
42
 
43
  ### Out-of-Scope Use
44
 
45
+ - Not intended for languages or layouts not represented in the DocLayNet dataset
46
+ - Not suitable for free-form text without document structure
 
47
 
48
  ## Bias, Risks, and Limitations
49
 
50
+ - The model may misclassify tokens if the document layout or language differs from the training data
51
+ - Biases may exist due to dataset composition (DocLayNet)
52
+ - Limited to 10 classes of document layout elements
53
 
54
  ### Recommendations
55
 
56
+ - Users should preprocess documents similarly to the training setup (tokenization + bounding boxes + image)
57
+ - Verify predictions, especially in production or high-stakes scenarios
 
58
 
59
  ## How to Get Started with the Model
60
 
61
+ ```python
62
+ from transformers import LayoutLMv3ForTokenClassification, AutoProcessor
63
+ import torch
64
 
65
+ repo = "kbsooo/layoutlmv3_finetuned_doclaynet"
66
+ model = LayoutLMv3ForTokenClassification.from_pretrained(repo)
67
+ processor = AutoProcessor.from_pretrained(repo)
68
+
69
+ image = ... # PIL.Image or np.array
70
+ text = "Sample document text"
71
+
72
+ encoding = processor(image, text, return_tensors="pt")
73
+ outputs = model(**encoding)
74
+ preds = torch.argmax(outputs.logits, dim=-1)
75
+ print(preds)
76
+ ```
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
82
+ - Dataset: DocLayNet-v1.2
83
+ - Train/Validation split: 200/100 samples
84
+ - Columns: input_ids, attention_mask, bbox, labels, pixel_values, n_words_in, n_words_out
85
 
86
  ### Training Procedure
87
 
88
+ - Optimizer: AdamW
89
+ - Learning rate: 5e-5
90
+ - Epochs: 5
91
+ - Mixed precision: FP16 optional
92
+ - Loss: Cross-entropy per token
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  ## Evaluation
96
 
97
+ - Sample metrics (from validation set):
98
+ - Avg Train Loss: 0.134
99
+ - Avg Val Loss: 0.458
100
+ - Token prediction accuracy should be checked against the DocLayNet labels
 
 
 
 
 
 
 
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Environmental Impact
104
 
 
106
 
107
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
108
 
109
+ - **Hardware Type:** NVIDIA A100
110
+ - **Hours used:** ~1 hr for 5 epochs (for small dataset)
 
 
 
111
 
112
+ ## Technical Specifications
113
 
114
  ### Model Architecture and Objective
115
 
116
+ - Base model: LayoutLMv3
117
+ - Task: Token classification for document layout elements
118
+ - Input: Tokenized text, bounding boxes, and document images
119
+ - Output: Token-wise logits for 10 classes
120
 
121
  ### Compute Infrastructure
122
 
123
+ - Training performed on Google Colab Pro (A100 GPU)
124
+ - Framework: PyTorch + Hugging Face Transformers
 
125
 
126
+ ## Citation
 
 
 
 
 
 
127
 
128
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
129
 
130
  **BibTeX:**
131
 
132
+ ```bibtex
133
+ @article{huang2022layoutlmv3,
134
+ title={LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking},
135
+ author={Huang, Zejiang and et al.},
136
+ journal={arXiv preprint arXiv:2112.01041},
137
+ year={2022}
138
+ }
139
+ ```
140
 
141
  **APA:**
142
 
143
+ Huang, Z., et al. (2022). LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking. arXiv preprint arXiv:2112.01041.