Update README.md
Browse files
README.md
CHANGED
|
@@ -56,59 +56,176 @@ Three strategies are provided per backbone:
|
|
| 56 |
|
| 57 |
---
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
---
|
| 63 |
|
| 64 |
## Bias, Risks, and Limitations
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
- APA involves subjective human judgments; ensure careful calibration and validation on your domain.
|
| 68 |
-
|
| 69 |
-
**Recommendation:** Validate on in-domain data and monitor subgroup performance.
|
| 70 |
|
| 71 |
---
|
| 72 |
|
| 73 |
## How to Get Started
|
| 74 |
|
| 75 |
-
###
|
| 76 |
-
|
| 77 |
from transformers import AutoModelForCTC, AutoProcessor
|
| 78 |
|
| 79 |
-
ckpt = "haeylee/ssl_ft_pron/wav2vec2/ctc/01_wav2vec2-large"
|
| 80 |
model = AutoModelForCTC.from_pretrained(ckpt)
|
| 81 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 82 |
-
|
| 83 |
|
| 84 |
-
###
|
| 85 |
-
|
| 86 |
from transformers import AutoProcessor, Wav2Vec2Model, HubertModel, WavLMModel
|
| 87 |
|
| 88 |
-
# Wav2Vec2
|
| 89 |
ckpt = "haeylee/ssl_ft_pron/wav2vec2/general/01_wav2vec2-large"
|
| 90 |
model = Wav2Vec2Model.from_pretrained(ckpt)
|
| 91 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 92 |
|
| 93 |
-
# HuBERT
|
| 94 |
# ckpt = "haeylee/ssl_ft_pron/hubert/freeze/06_hubert-large-ll60k"
|
| 95 |
# model = HubertModel.from_pretrained(ckpt)
|
| 96 |
# processor = AutoProcessor.from_pretrained(ckpt)
|
| 97 |
|
| 98 |
-
# WavLM
|
| 99 |
# ckpt = "haeylee/ssl_ft_pron/wavlm/general/10_wavlm-large"
|
| 100 |
# model = WavLMModel.from_pretrained(ckpt)
|
| 101 |
# processor = AutoProcessor.from_pretrained(ckpt)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
## Training Details
|
| 108 |
|
| 109 |
### Training Data
|
| 110 |
- **Dataset:** [Speechocean762](https://openslr.org/101/)
|
| 111 |
-
- **Preprocessing:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
---
|
| 58 |
|
| 59 |
+
## Uses
|
| 60 |
+
|
| 61 |
+
### Direct Use
|
| 62 |
+
- Research/prototyping for **pronunciation scoring** and **representation analysis** (e.g., PCA on hidden states).
|
| 63 |
+
- Feature extraction for downstream APA tasks.
|
| 64 |
+
|
| 65 |
+
### Downstream Use
|
| 66 |
+
- Integrate APA scores into CALL and assessment tools.
|
| 67 |
+
- Use **CTC** variants in ASR-aligned pipelines; use **General/Freeze** for regression of APA scores.
|
| 68 |
+
|
| 69 |
---
|
| 70 |
|
| 71 |
## Bias, Risks, and Limitations
|
| 72 |
+
- Trained/evaluated on **Speechocean762** (read English by L2 speakers). Generalization to other languages/speaking styles is not guaranteed.
|
| 73 |
+
- APA relies on subjective human scores; apply domain calibration and monitor subgroup performance.
|
| 74 |
|
| 75 |
+
**Recommendation:** Validate on in-domain data; report uncertainty and subgroup metrics.
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
---
|
| 78 |
|
| 79 |
## How to Get Started
|
| 80 |
|
| 81 |
+
### Load a CTC model (with CTC head)
|
| 82 |
+
~~~python
|
| 83 |
from transformers import AutoModelForCTC, AutoProcessor
|
| 84 |
|
| 85 |
+
ckpt = "haeylee/ssl_ft_pron/wav2vec2/ctc/01_wav2vec2-large"
|
| 86 |
model = AutoModelForCTC.from_pretrained(ckpt)
|
| 87 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 88 |
+
~~~
|
| 89 |
|
| 90 |
+
### Load a General / Freeze model (no CTC head)
|
| 91 |
+
~~~python
|
| 92 |
from transformers import AutoProcessor, Wav2Vec2Model, HubertModel, WavLMModel
|
| 93 |
|
| 94 |
+
# Wav2Vec2 (General)
|
| 95 |
ckpt = "haeylee/ssl_ft_pron/wav2vec2/general/01_wav2vec2-large"
|
| 96 |
model = Wav2Vec2Model.from_pretrained(ckpt)
|
| 97 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 98 |
|
| 99 |
+
# HuBERT (Freeze)
|
| 100 |
# ckpt = "haeylee/ssl_ft_pron/hubert/freeze/06_hubert-large-ll60k"
|
| 101 |
# model = HubertModel.from_pretrained(ckpt)
|
| 102 |
# processor = AutoProcessor.from_pretrained(ckpt)
|
| 103 |
|
| 104 |
+
# WavLM (General)
|
| 105 |
# ckpt = "haeylee/ssl_ft_pron/wavlm/general/10_wavlm-large"
|
| 106 |
# model = WavLMModel.from_pretrained(ckpt)
|
| 107 |
# processor = AutoProcessor.from_pretrained(ckpt)
|
| 108 |
+
~~~
|
| 109 |
+
|
| 110 |
+
**Summary:**
|
| 111 |
+
- **CTC:** `AutoModelForCTC.from_pretrained(...)`
|
| 112 |
+
- **General/Freeze:** `Wav2Vec2Model` / `HubertModel` / `WavLMModel` `.from_pretrained(...)`
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
|
| 116 |
## Training Details
|
| 117 |
|
| 118 |
### Training Data
|
| 119 |
- **Dataset:** [Speechocean762](https://openslr.org/101/)
|
| 120 |
+
- **Preprocessing:** We used `preprocess_dataset.py` (see the GitHub repo) to convert raw audio/labels into Hugging Face `datasets` format.
|
| 121 |
+
|
| 122 |
+
**Expected processed layout:**
|
| 123 |
+
~~~text
|
| 124 |
+
/your/data/path/speechocean762/
|
| 125 |
+
βββ preprocess/
|
| 126 |
+
βββ speechocean_train_ds/
|
| 127 |
+
βββ speechocean_test_ds/
|
| 128 |
+
~~~
|
| 129 |
+
|
| 130 |
+
### Training Procedure
|
| 131 |
+
|
| 132 |
+
#### Preprocessing
|
| 133 |
+
~~~bash
|
| 134 |
+
# Adjust paths inside the script or via CLI args
|
| 135 |
+
python preprocess_dataset.py \
|
| 136 |
+
--data_root /your/data/path/speechocean762 \
|
| 137 |
+
--out_dir /your/data/path/speechocean762/preprocess
|
| 138 |
+
~~~
|
| 139 |
+
|
| 140 |
+
#### General (no CTC head)
|
| 141 |
+
Loads encoders with `Wav2Vec2Model / HubertModel / WavLMModel .from_pretrained(...)` and trains a regression head to predict 4 APA scores.
|
| 142 |
+
~~~bash
|
| 143 |
+
python train/baseline.py \
|
| 144 |
+
--model_name facebook/hubert-xlarge-ls960-ft \
|
| 145 |
+
--batch_size 4 \
|
| 146 |
+
--learning_rate 1e-5 \
|
| 147 |
+
--num_train_epochs 30
|
| 148 |
+
~~~
|
| 149 |
+
|
| 150 |
+
#### Freeze (feature extractor frozen)
|
| 151 |
+
Same as **General**, but freezes the CNN feature extractor.
|
| 152 |
+
~~~bash
|
| 153 |
+
python train/freeze.py \
|
| 154 |
+
--model_name facebook/hubert-xlarge-ls960-ft \
|
| 155 |
+
--freeze_feature_extractor \
|
| 156 |
+
--batch_size 4 \
|
| 157 |
+
--learning_rate 1e-5 \
|
| 158 |
+
--num_train_epochs 30
|
| 159 |
+
~~~
|
| 160 |
+
|
| 161 |
+
#### CTC (ASR-style head)
|
| 162 |
+
Uses `AutoModelForCTC.from_pretrained(...)` for CTC training.
|
| 163 |
+
~~~bash
|
| 164 |
+
python train/ctc.py \
|
| 165 |
+
--model_name facebook/wav2vec2-large \
|
| 166 |
+
--batch_size 4 \
|
| 167 |
+
--learning_rate 1e-5 \
|
| 168 |
+
--num_train_epochs 30
|
| 169 |
+
~~~
|
| 170 |
+
|
| 171 |
+
**Artifacts saved:** `model.safetensors`, `trainer_state.json`, `training_args.bin`, logs, and checkpoints (per run: `args.json`, `trainer_args.json`).
|
| 172 |
+
|
| 173 |
+
---
|
| 174 |
+
|
| 175 |
+
## Evaluation
|
| 176 |
+
|
| 177 |
+
### Testing Data, Factors & Metrics
|
| 178 |
+
- **Test set:** Speechocean762 (held-out split prepared by `preprocess_dataset.py`)
|
| 179 |
+
- **Factors:** Backbone (Wav2Vec2 / HuBERT / WavLM) Γ strategy (CTC / General / Freeze)
|
| 180 |
+
- **Metric:** `pearsonr` (Pearson correlation coefficient, PCC) for Accuracy, Fluency, Prosody, and Total.
|
| 181 |
+
|
| 182 |
+
### Results (PCC highlights)
|
| 183 |
+
- **Best Total PCC (paper):** ~**0.745** (HuBERT xlarge ls960-ft; strong results for CTC/Freeze variants).
|
| 184 |
+
- Wav2Vec2-large/960h show strong **Fluency**/**Total** under General.
|
| 185 |
+
- Full table is in the paper and GitHub README.
|
| 186 |
+
|
| 187 |
+
#### Summary
|
| 188 |
+
- **CTC** benefits ASR-aligned objectives.
|
| 189 |
+
- **General/Freeze** directly regress APA scores and support representation analysis (e.g., PCA).
|
| 190 |
|
| 191 |
+
---
|
| 192 |
+
|
| 193 |
+
## Model Examination (Intrinsic Analysis)
|
| 194 |
+
PCA on hidden representations reveals distinct geometries:
|
| 195 |
+
- **Wav2Vec2:** conical (score continuity)
|
| 196 |
+
- **HuBERT:** V-shape (two-axis decision)
|
| 197 |
+
- **WavLM:** S-shape (diverse scoring factors)
|
| 198 |
+
|
| 199 |
+
---
|
| 200 |
+
|
| 201 |
+
## Technical Specifications
|
| 202 |
+
|
| 203 |
+
### Architecture & Objective
|
| 204 |
+
- Backbones: Wav2Vec2.0 / HuBERT / WavLM
|
| 205 |
+
- Objectives:
|
| 206 |
+
- **CTC:** ASR-style CTC head
|
| 207 |
+
- **General/Freeze:** regression head predicting 4 APA scores
|
| 208 |
+
|
| 209 |
+
### Compute Infrastructure
|
| 210 |
+
- See saved configs/logs per run (`trainer_state.json`, `training_args.bin`, `args.json`).
|
| 211 |
+
|
| 212 |
+
---
|
| 213 |
+
|
| 214 |
+
## Citation
|
| 215 |
+
~~~bibtex
|
| 216 |
+
@inproceedings{lee2024analysis,
|
| 217 |
+
title={Analysis of Various Self-Supervised Learning Models for Automatic Pronunciation Assessment},
|
| 218 |
+
author={Lee, Haeyoung and Kim, Sunhee and Chung, Minhwa},
|
| 219 |
+
booktitle={2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)},
|
| 220 |
+
pages={1--6},
|
| 221 |
+
year={2024},
|
| 222 |
+
organization={IEEE}
|
| 223 |
+
}
|
| 224 |
+
~~~
|
| 225 |
+
|
| 226 |
+
---
|
| 227 |
|
| 228 |
+
## Authors & Contact
|
| 229 |
+
- **Author:** Haeyoung Lee (haeylee)
|
| 230 |
+
- **Email:** [email protected]
|
| 231 |
+
- **Issues/Requests:** https://github.com/hy310/ssl_finetuning
|