nanomind-step-002000 / train_run1.py
ethanker's picture
Upload step_002000 checkpoint, training script and run command.
2a9b282 verified
#!/usr/bin/env python3
"""
Nanomind pretraining script for decoder-only causal LM on JSONL.gz data.
- Expects input file with one JSON object per line containing a `text` field.
- Streams, tokenizes, and packs sequences to a fixed length for efficient training.
- Uses a small LLaMA-style config by default (RMSNorm + SwiGLU + RoPE, MQA).
Usage example:
python /workspace/nanomind/train.py \
--data_path /workspace/nanomind_data/pretrain_1m.jsonl.gz \
--out_dir /workspace/nanomind_runs/run1 \
--tokenizer_name hf-internal-testing/llama-tokenizer \
--seq_len 4096 --global_batch_size 256 \
--lr 1e-3 --warmup_steps 2000 --max_steps 50000 --bf16
"""
import os
import io
import gc
import gzip
import json
import math
import time
import random
import argparse
from pathlib import Path
from typing import Iterator, List, Dict, Optional
import torch
from torch import nn
from torch.utils.data import IterableDataset, DataLoader
from transformers import (
AutoTokenizer,
LlamaConfig,
LlamaForCausalLM,
get_cosine_schedule_with_warmup,
)
class JsonlPackedDataset(IterableDataset):
"""
Streams a JSONL(.gz) file of objects with a `text` field, tokenizes, and
packs tokens into fixed-length blocks of `seq_len`.
"""
def __init__(
self,
data_path: str,
tokenizer,
seq_len: int,
shuffle_lines: bool = False,
add_bos_eos: bool = True,
repeat: bool = True,
buffer_tokens_limit: int = 4_000_000,
) -> None:
super().__init__()
self.data_path = str(data_path)
self.tokenizer = tokenizer
self.seq_len = int(seq_len)
self.shuffle_lines = bool(shuffle_lines)
self.add_bos_eos = bool(add_bos_eos)
self.repeat = bool(repeat)
self.buffer_tokens_limit = int(buffer_tokens_limit)
# pack buffers
self._token_buffer: List[int] = []
def _line_iter(self) -> Iterator[str]:
path = self.data_path
is_gz = path.endswith(".gz")
open_fn = gzip.open if is_gz else open
mode = "rt"
while True:
with open_fn(path, mode, encoding="utf-8") as f:
for line in f:
yield line
if not self.repeat:
break
def _yield_blocks(self) -> Iterator[Dict[str, torch.Tensor]]:
bos_id = getattr(self.tokenizer, "bos_token_id", None)
eos_id = getattr(self.tokenizer, "eos_token_id", None)
# local references for speed
token_buffer = self._token_buffer
seq_len = self.seq_len
for raw_line in self._line_iter():
raw_line = raw_line.strip()
if not raw_line:
continue
try:
obj = json.loads(raw_line)
except json.JSONDecodeError:
continue
text = obj.get("text")
if not text or len(text) < 10:
continue
if self.add_bos_eos and bos_id is not None and eos_id is not None:
encoded = self.tokenizer.encode(
text, add_special_tokens=False
)
# Guard against rare None returns
if not encoded:
continue
token_buffer.append(bos_id)
token_buffer.extend(encoded)
token_buffer.append(eos_id)
else:
encoded = self.tokenizer.encode(text, add_special_tokens=True)
if not encoded:
continue
token_buffer.extend(encoded)
# If buffer grows too large, drop tail to constrain RAM
if len(token_buffer) > self.buffer_tokens_limit:
del token_buffer[: len(token_buffer) - self.buffer_tokens_limit]
# Emit fixed-length blocks
while len(token_buffer) >= seq_len:
block = token_buffer[:seq_len]
del token_buffer[:seq_len]
input_ids = torch.tensor(block, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
# Causal LM uses labels equal to inputs
yield {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids.clone(),
}
def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]:
# Worker-specific shard: in IterableDataset DataLoader workers receive cloned objects.
# To keep it simple and deterministic, don't split lines per-worker; rely on global batching.
return self._yield_blocks()
def build_model_and_tokenizer(
tokenizer_name: Optional[str],
tokenizer_dir: Optional[str],
model_name: Optional[str],
vocab_size_override: Optional[int],
hidden_size: int,
n_layers: int,
n_heads: int,
n_kv_heads: int,
rope_theta: float,
max_position_embeddings: int,
) -> tuple:
# Tokenizer
if tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
elif tokenizer_dir:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=True)
else:
raise ValueError("Provide --tokenizer_name or --tokenizer_dir")
# Ensure pad token for batching; map to eos if missing (common for causal LMs)
if tokenizer.pad_token_id is None:
if tokenizer.eos_token_id is not None:
tokenizer.pad_token = tokenizer.eos_token
else:
# Fallback: add a [PAD] token
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
vocab_size = vocab_size_override or len(tokenizer)
# Model
if model_name:
model = LlamaForCausalLM.from_pretrained(model_name)
# Resize embeddings if tokenizer changed
if model.get_input_embeddings().weight.shape[0] != vocab_size:
model.resize_token_embeddings(vocab_size)
else:
config = LlamaConfig(
vocab_size=vocab_size,
hidden_size=hidden_size, # d_model
intermediate_size=int(hidden_size * 2.2), # SwiGLU widen 2.0–2.5
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
num_key_value_heads=n_kv_heads,
rms_norm_eps=1e-5,
rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings,
tie_word_embeddings=True,
)
model = LlamaForCausalLM(config)
return model, tokenizer
def get_dataloader(
data_path: str,
tokenizer,
seq_len: int,
micro_batch_size: int,
num_workers: int,
) -> DataLoader:
dataset = JsonlPackedDataset(
data_path=data_path,
tokenizer=tokenizer,
seq_len=seq_len,
shuffle_lines=False,
add_bos_eos=True,
repeat=True,
)
return DataLoader(
dataset,
batch_size=micro_batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
collate_fn=_collate_batch,
)
def _collate_batch(features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
# All are fixed-length; just stack
input_ids = torch.stack([f["input_ids"] for f in features], dim=0)
attention_mask = torch.stack([f["attention_mask"] for f in features], dim=0)
labels = torch.stack([f["labels"] for f in features], dim=0)
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
def parse_args() -> argparse.Namespace:
ap = argparse.ArgumentParser()
# Data
ap.add_argument("--data_path", required=True, help="Path to JSONL(.gz) with {text}")
ap.add_argument("--seq_len", type=int, default=4096)
ap.add_argument("--num_workers", type=int, default=2)
# Tokenizer & Model
ap.add_argument("--tokenizer_name", default=None, help="HF tokenizer name")
ap.add_argument("--tokenizer_dir", default=None, help="Local dir of HF tokenizer")
ap.add_argument("--model_name", default=None, help="HF model name to continue from (CPT)")
ap.add_argument("--vocab_size_override", type=int, default=None)
# Small LLaMA-like config (used when --model_name not provided)
ap.add_argument("--hidden_size", type=int, default=768)
ap.add_argument("--n_layers", type=int, default=24)
ap.add_argument("--n_heads", type=int, default=12)
ap.add_argument("--n_kv_heads", type=int, default=1)
ap.add_argument("--rope_theta", type=float, default=1e6)
ap.add_argument("--max_position_embeddings", type=int, default=4096)
# Training
ap.add_argument("--out_dir", required=True)
ap.add_argument("--global_batch_size", type=int, default=256)
ap.add_argument("--micro_batch_size", type=int, default=None, help="Per-step batch size before grad accumulation")
ap.add_argument("--lr", type=float, default=1e-3)
ap.add_argument("--weight_decay", type=float, default=0.05)
ap.add_argument("--warmup_steps", type=int, default=2000)
ap.add_argument("--max_steps", type=int, default=50_000)
ap.add_argument("--save_every", type=int, default=2000)
ap.add_argument("--clip_grad", type=float, default=1.0)
ap.add_argument("--bf16", action="store_true")
ap.add_argument("--seed", type=int, default=42)
return ap.parse_args()
def set_seed(seed: int) -> None:
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main() -> None:
args = parse_args()
set_seed(args.seed)
out_dir = Path(args.out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
model, tokenizer = build_model_and_tokenizer(
tokenizer_name=args.tokenizer_name,
tokenizer_dir=args.tokenizer_dir,
model_name=args.model_name,
vocab_size_override=args.vocab_size_override,
hidden_size=args.hidden_size,
n_layers=args.n_layers,
n_heads=args.n_heads,
n_kv_heads=args.n_kv_heads,
rope_theta=args.rope_theta,
max_position_embeddings=args.max_position_embeddings,
)
model = model.to(device)
# Data
micro_bs = args.micro_batch_size or min( max(1, args.global_batch_size // 8), args.global_batch_size)
grad_accum = max(1, args.global_batch_size // micro_bs)
train_loader = get_dataloader(
data_path=args.data_path,
tokenizer=tokenizer,
seq_len=args.seq_len,
micro_batch_size=micro_bs,
num_workers=args.num_workers,
)
# Optimizer & Scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.95))
scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps,
)
scaler = None
use_bf16 = args.bf16 and torch.cuda.is_available()
autocast_dtype = torch.bfloat16 if use_bf16 else torch.float16
model.train()
step = 0
running_loss = 0.0
tokens_per_step = args.global_batch_size * args.seq_len
last_log = time.time()
# Simple training loop over streaming dataloader
data_iter = iter(train_loader)
while step < args.max_steps:
optimizer.zero_grad(set_to_none=True)
for micro_step in range(grad_accum):
try:
batch = next(data_iter)
except StopIteration:
data_iter = iter(train_loader)
batch = next(data_iter)
input_ids = batch["input_ids"].to(device, non_blocking=True)
attention_mask = batch["attention_mask"].to(device, non_blocking=True)
labels = batch["labels"].to(device, non_blocking=True)
with torch.autocast(device_type="cuda", dtype=autocast_dtype, enabled=use_bf16):
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss / grad_accum
loss.backward()
running_loss += loss.item()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.clip_grad)
optimizer.step()
scheduler.step()
step += 1
# Logging
if step % 10 == 0:
now = time.time()
dt = now - last_log
last_log = now
avg_loss = running_loss / 10
running_loss = 0.0
ppl = math.exp(avg_loss) if avg_loss < 30 else float("inf")
tokens_sec = tokens_per_step / dt if dt > 0 else 0.0
print(
f"step {step:6d} | loss {avg_loss:.4f} | ppl {ppl:.2f} | tokens/s {tokens_sec:,.0f} | lr {scheduler.get_last_lr()[0]:.2e}",
flush=True,
)
# Checkpointing
if step % args.save_every == 0 or step == args.max_steps:
ckpt_dir = out_dir / f"step_{step:06d}"
ckpt_dir.mkdir(parents=True, exist_ok=True)
model.save_pretrained(ckpt_dir)
tokenizer.save_pretrained(ckpt_dir)
# Small memory hygiene
if step % 100 == 0:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Final save
model.save_pretrained(out_dir / "final")
tokenizer.save_pretrained(out_dir / "final")
if __name__ == "__main__":
main()