--- base_model: - ertghiu256/qwen-3-4b-mixture-of-thought - Tesslate/UIGEN-T3-4B-Preview-MAX - ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3 - ValiantLabs/Qwen3-4B-ShiningValiant3 - ertghiu256/qwen3-math-reasoner - Qwen/Qwen3-4B-Thinking-2507 - ValiantLabs/Qwen3-4B-Esper3 - Qwen/Qwen3-4b-Instruct-2507 - ertghiu256/qwen3-multi-reasoner - janhq/Jan-v1-4B - ertghiu256/qwen3-4b-code-reasoning - ertghiu256/Qwen3-Hermes-4b - GetSoloTech/Qwen3-Code-Reasoning-4B - POLARIS-Project/Polaris-4B-Preview - huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated library_name: transformers tags: - mergekit - merge - thinking - think - reasoning - reason - code - math - qwen - qwen3 language: - en new_version: ertghiu256/Qwen3-4b-tcomanr-merge-v2.5 --- # Ties merged COde MAth aNd Reasoning model This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details This model is a revision of the [ertghiu256/Qwen3-4b-tcomanr-merge-v2.2](https://huggingface.co/ertghiu256/Qwen3-4b-tcomanr-merge-v2.2/) This model aims to combine the reasoning, code, and math capabilities of Qwen3 4b 2507 reasoning by merging it with some other Qwen3 finetunes. This model reasoning is very long. # How to run You can run this model by using multiple interface choices ## Transformers As the qwen team suggested to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ertghiu256/Qwen3-4b-tcomanr-merge-v2.3" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) # no opening tag print("content:", content) ``` ## Vllm Run this command ```bash vllm serve ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 --enable-reasoning --reasoning-parser deepseek_r1 ``` ## Sglang Run this command ```bash python -m sglang.launch_server --model-path ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 --reasoning-parser deepseek-r1 ``` ## llama.cpp Run this command ```bash llama-server --hf-repo ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 ``` or ```bash llama-cli --hf ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 ``` ## Ollama View the [model at ollama.com](https://ollama.com/ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:latest) or Run this command ```bash ollama run ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:Q8_0 ``` or for Q5_K_M quant ```bash ollama run ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:Q5_K_M ``` or for IQ4_NL quant ```bash ollama run ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:IQ4_NL ``` ## LM Studio Search ``` ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 ``` in the lm studio model search list then download ### Recomended parameters ``` temp: 0.6 num_ctx: ≥8192 top_p: 0.95 top_k: 10 Repeat Penalty: 1.1 ``` ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen3-4B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) as a base. ### Models Merged The following models were included in the merge: * [ertghiu256/qwen-3-4b-mixture-of-thought](https://huggingface.co/ertghiu256/qwen-3-4b-mixture-of-thought) * [Tesslate/UIGEN-T3-4B-Preview-MAX](https://huggingface.co/Tesslate/UIGEN-T3-4B-Preview-MAX) * [ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3](https://huggingface.co/ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3) * [ValiantLabs/Qwen3-4B-ShiningValiant3](https://huggingface.co/ValiantLabs/Qwen3-4B-ShiningValiant3) * [ertghiu256/qwen3-math-reasoner](https://huggingface.co/ertghiu256/qwen3-math-reasoner) * [ValiantLabs/Qwen3-4B-Esper3](https://huggingface.co/ValiantLabs/Qwen3-4B-Esper3) * [Qwen/Qwen3-4b-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4b-Instruct-2507) * [ertghiu256/qwen3-multi-reasoner](https://huggingface.co/ertghiu256/qwen3-multi-reasoner) * [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) * [ertghiu256/qwen3-4b-code-reasoning](https://huggingface.co/ertghiu256/qwen3-4b-code-reasoning) * [ertghiu256/Qwen3-Hermes-4b](https://huggingface.co/ertghiu256/Qwen3-Hermes-4b) * [GetSoloTech/Qwen3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Qwen3-Code-Reasoning-4B) * [POLARIS-Project/Polaris-4B-Preview](https://huggingface.co/POLARIS-Project/Polaris-4B-Preview) * [huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated](https://huggingface.co/huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ertghiu256/qwen3-math-reasoner parameters: weight: 0.8 - model: ertghiu256/qwen3-4b-code-reasoning parameters: weight: 0.9 - model: ertghiu256/qwen-3-4b-mixture-of-thought parameters: weight: 1.0 - model: POLARIS-Project/Polaris-4B-Preview parameters: weight: 0.8 - model: ertghiu256/qwen3-multi-reasoner parameters: weight: 0.9 - model: ertghiu256/Qwen3-Hermes-4b parameters: weight: 0.7 - model: ValiantLabs/Qwen3-4B-Esper3 parameters: weight: 0.75 - model: Tesslate/UIGEN-T3-4B-Preview-MAX parameters: weight: 1.0 - model: ValiantLabs/Qwen3-4B-ShiningValiant3 parameters: weight: 0.6 density: 0.5 - model: huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated parameters: weight: 0.75 - model: Qwen/Qwen3-4B-Thinking-2507 parameters: weight: 1.0 - model: Qwen/Qwen3-4b-Instruct-2507 parameters: weight: 0.75 - model: GetSoloTech/Qwen3-Code-Reasoning-4B parameters: weight: 0.75 density: 0.55 - model: ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3 parameters: weight: 1.0 - model: janhq/Jan-v1-4B parameters: weight: 0.3 merge_method: ties base_model: Qwen/Qwen3-4B-Thinking-2507 parameters: normalize: true int8_mask: true lambda: 1.0 dtype: float16 ```