File size: 8,616 Bytes
4d5a752
 
 
 
 
 
a8f1c61
 
 
4d5a752
 
 
 
 
 
 
 
a8f1c61
 
 
 
 
90a7224
4d5a752
 
0666b1d
 
 
 
 
 
 
 
 
 
e8d3ae7
0666b1d
e8d3ae7
0666b1d
4d5a752
 
ce7e52b
 
 
4d5a752
 
 
 
 
 
 
 
 
5cc0f4a
 
 
 
 
 
 
 
 
 
90a7224
5cc0f4a
 
 
 
1e54166
5cc0f4a
 
 
1e54166
5cc0f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d5a752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f1c61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
- name
- person
- company
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mdeberta-v3-base-name-classifier
  results: []
datasets:
- ele-sage/person-company-names-classification
language:
- fr
- en
new_version: ele-sage/mdeberta-v3-base-name-classifier-v2
---



# ⚠️ DEPRECATED MODEL ⚠️

**Please do not use this model for new projects.**

This model has been superseded by a newer, more accurate version trained on a larger, cleaner dataset.
It is maintained here for archival purposes only.

### ✅ Recommended Replacement:
Please switch to **[ele-sage/mdeberta-v3-base-name-classifier-v2](https://huggingface.co/ele-sage/mdeberta-v3-base-name-classifier-v2)** (Higher Accuracy).

---

# mdeberta-v3-base-name-classifier

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on [ele-sage/person-company-names-classification](https://huggingface.co/datasets/ele-sage/person-company-names-classification) dataset.


It achieves the following results on the evaluation set:
- Loss: 0.0305
- Accuracy: 0.9922
- Precision: 0.9957
- Recall: 0.9906
- F1: 0.9931

## Model description

This model is a high-performance binary text classifier, fine-tuned from `mdeberta-v3-base`.
Its purpose is to distinguish between a **person's name** and a **company/organization name** with high accuracy.

### Direct Use

This model is intended to be used for text classification. Given a string, it will return a label indicating whether the string is a `Person` or a `Company`.

```python
from transformers import pipeline

classifier = pipeline("text-classification", model="ele-sage/mdeberta-v3-base-name-classifier")

results = classifier([
    "Satya Nadella",
    "Global Innovations Inc.",
    "Martinez, Alonso"
])

for result in results:
    print(f"Text: '{result['text']}', Prediction: {result['label']}, Score: {result['score']:.4f}")
```

### Downstream Use

This model is a key component of a two-stage name processing pipeline. It is designed to be used as a fast, efficient "gatekeeper" to first identify person names before passing them to a more complex parsing model, such as `ele-sage/distilbert-base-uncased-name-splitter`.

### Out-of-Scope Use

- This model is not a general-purpose classifier. It is highly specialized for distinguishing persons from companies and will not perform well on other classification tasks (e.g., sentiment analysis).

## Bias, Risks, and Limitations

- **Geographic & Cultural Bias:** The training data is heavily biased towards North American (Canadian) person names and Quebec-based company names. The model will be less accurate when classifying names from other cultural or geographic origins.
- **Ambiguity:** Certain names can legitimately be both a person's name and a company's name (e.g., "Ford"). In these cases, the model makes a statistical guess based on its training data, which may not always align with the specific context.
- **Data Source:** The person name data is derived from a Facebook data leak and contains noise. While a rigorous cleaning process was applied, the model may have learned from some spurious data.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0592        | 0.0203 | 2000  | 0.0526          | 0.9877   | 0.9912    | 0.9872 | 0.9892 |
| 0.0473        | 0.0406 | 4000  | 0.0429          | 0.9891   | 0.9940    | 0.9868 | 0.9904 |
| 0.0491        | 0.0610 | 6000  | 0.0407          | 0.9893   | 0.9949    | 0.9863 | 0.9906 |
| 0.0383        | 0.0813 | 8000  | 0.0386          | 0.9898   | 0.9954    | 0.9868 | 0.9911 |
| 0.0415        | 0.1016 | 10000 | 0.0378          | 0.9904   | 0.9950    | 0.9881 | 0.9915 |
| 0.0315        | 0.1219 | 12000 | 0.0410          | 0.9905   | 0.9955    | 0.9877 | 0.9916 |
| 0.0416        | 0.1422 | 14000 | 0.0387          | 0.9908   | 0.9950    | 0.9888 | 0.9919 |
| 0.0292        | 0.1625 | 16000 | 0.0383          | 0.9908   | 0.9964    | 0.9874 | 0.9919 |
| 0.0381        | 0.1829 | 18000 | 0.0357          | 0.9907   | 0.9959    | 0.9878 | 0.9918 |
| 0.0266        | 0.2032 | 20000 | 0.0395          | 0.9909   | 0.9938    | 0.9902 | 0.9920 |
| 0.035         | 0.2235 | 22000 | 0.0392          | 0.9909   | 0.9956    | 0.9885 | 0.9920 |
| 0.0333        | 0.2438 | 24000 | 0.0356          | 0.9910   | 0.9935    | 0.9907 | 0.9921 |
| 0.0321        | 0.2641 | 26000 | 0.0343          | 0.9909   | 0.9947    | 0.9894 | 0.9920 |
| 0.0308        | 0.2845 | 28000 | 0.0360          | 0.9912   | 0.9954    | 0.9892 | 0.9923 |
| 0.0317        | 0.3048 | 30000 | 0.0348          | 0.9912   | 0.9941    | 0.9905 | 0.9923 |
| 0.0359        | 0.3251 | 32000 | 0.0346          | 0.9913   | 0.9959    | 0.9889 | 0.9924 |
| 0.0437        | 0.3454 | 34000 | 0.0333          | 0.9912   | 0.9957    | 0.9889 | 0.9923 |
| 0.0401        | 0.3657 | 36000 | 0.0334          | 0.9914   | 0.9954    | 0.9895 | 0.9924 |
| 0.0419        | 0.3861 | 38000 | 0.0321          | 0.9915   | 0.9957    | 0.9895 | 0.9926 |
| 0.032         | 0.4064 | 40000 | 0.0339          | 0.9914   | 0.9947    | 0.9902 | 0.9925 |
| 0.0367        | 0.4267 | 42000 | 0.0314          | 0.9916   | 0.9948    | 0.9904 | 0.9926 |
| 0.0276        | 0.4470 | 44000 | 0.0355          | 0.9915   | 0.9954    | 0.9897 | 0.9925 |
| 0.0373        | 0.4673 | 46000 | 0.0321          | 0.9916   | 0.9954    | 0.9899 | 0.9926 |
| 0.0364        | 0.4876 | 48000 | 0.0327          | 0.9915   | 0.9966    | 0.9885 | 0.9925 |
| 0.0317        | 0.5080 | 50000 | 0.0311          | 0.9914   | 0.9934    | 0.9915 | 0.9924 |
| 0.0355        | 0.5283 | 52000 | 0.0307          | 0.9917   | 0.9957    | 0.9898 | 0.9927 |
| 0.0276        | 0.5486 | 54000 | 0.0321          | 0.9918   | 0.9952    | 0.9904 | 0.9928 |
| 0.0342        | 0.5689 | 56000 | 0.0319          | 0.9918   | 0.9956    | 0.9900 | 0.9928 |
| 0.0316        | 0.5892 | 58000 | 0.0314          | 0.9918   | 0.9949    | 0.9906 | 0.9928 |
| 0.0322        | 0.6096 | 60000 | 0.0315          | 0.9916   | 0.9942    | 0.9912 | 0.9927 |
| 0.0357        | 0.6299 | 62000 | 0.0309          | 0.9921   | 0.9955    | 0.9905 | 0.9930 |
| 0.0296        | 0.6502 | 64000 | 0.0326          | 0.9919   | 0.9955    | 0.9903 | 0.9929 |
| 0.0324        | 0.6705 | 66000 | 0.0312          | 0.9919   | 0.9958    | 0.9900 | 0.9929 |
| 0.0266        | 0.6908 | 68000 | 0.0319          | 0.9920   | 0.9958    | 0.9902 | 0.9930 |
| 0.028         | 0.7112 | 70000 | 0.0321          | 0.9920   | 0.9961    | 0.9899 | 0.9930 |
| 0.0276        | 0.7315 | 72000 | 0.0319          | 0.9919   | 0.9963    | 0.9895 | 0.9929 |
| 0.0288        | 0.7518 | 74000 | 0.0316          | 0.9920   | 0.9952    | 0.9908 | 0.9930 |
| 0.0295        | 0.7721 | 76000 | 0.0304          | 0.9920   | 0.9955    | 0.9904 | 0.9930 |
| 0.0305        | 0.7924 | 78000 | 0.0309          | 0.9920   | 0.9963    | 0.9896 | 0.9929 |
| 0.0298        | 0.8127 | 80000 | 0.0312          | 0.9921   | 0.9962    | 0.9899 | 0.9930 |
| 0.0241        | 0.8331 | 82000 | 0.0312          | 0.9921   | 0.9954    | 0.9907 | 0.9930 |
| 0.0332        | 0.8534 | 84000 | 0.0308          | 0.9920   | 0.9955    | 0.9906 | 0.9930 |
| 0.0281        | 0.8737 | 86000 | 0.0301          | 0.9922   | 0.9957    | 0.9905 | 0.9931 |
| 0.0274        | 0.8940 | 88000 | 0.0305          | 0.9921   | 0.9952    | 0.9908 | 0.9930 |
| 0.0263        | 0.9143 | 90000 | 0.0300          | 0.9922   | 0.9958    | 0.9905 | 0.9931 |
| 0.0215        | 0.9347 | 92000 | 0.0304          | 0.9921   | 0.9952    | 0.9909 | 0.9931 |
| 0.0367        | 0.9550 | 94000 | 0.0297          | 0.9922   | 0.9956    | 0.9907 | 0.9931 |
| 0.0298        | 0.9753 | 96000 | 0.0302          | 0.9922   | 0.9955    | 0.9908 | 0.9931 |
| 0.0202        | 0.9956 | 98000 | 0.0305          | 0.9922   | 0.9957    | 0.9906 | 0.9931 |


### Framework versions

- Transformers 4.57.1
- Pytorch 2.9.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1