File size: 4,360 Bytes
92ff720
 
 
 
 
 
 
 
 
 
 
 
 
 
911259f
 
 
92ff720
911259f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: cc-by-4.0
language:
- en
tags:
- hardware
- infrastructure
- system
- subsystem
- CPU
- GPU
- memory
- network
- storage
- telemetry
- anomaly-detection
- performance
pretty_name: Reveal
---

# 🛰️ Dataset Card for **Reveal: Hardware Telemetry Dataset for Machine Learning Infrastructure Profiling and Anomaly Detection**

## Dataset Details

### Dataset Description

**Reveal** is a large-scale, curated dataset of **hardware telemetry** collected from high-performance computing (HPC) while running diverse machine learning (ML) workloads.  
It enables reproducible research on **system-level profiling**, **unsupervised anomaly detection**, and **ML infrastructure optimization**.  

The dataset accompanies the paper  
📄 *“Detecting Anomalies in Systems for AI Using Hardware Telemetry”* (Chen *et al.*, University of Oxford, 2025).  
Reveal captures low-level hardware and operating system metrics—fully accessible to operators—allowing anomaly detection **without requiring workload knowledge or instrumentation**.

- **Curated by:** Ziji Chen, Steven W. D. Chien, Peng Qian, Noa Zilberman (University of Oxford, Department of Engineering Science)  
- **Shared by:** Ziji Chen (contact: [email protected])  
- **Language(s):** English (metadata and documentation)  
- **License:** [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)

---

### Dataset Sources

- **Paper:** [Detecting Anomalies in Systems for AI Using Hardware Telemetry](https://arxiv.org/abs/submit/6934461)  
- **DOI:** [10.5281/zenodo.17470313](https://doi.org/10.5281/zenodo.17470313)  

---

## Uses

### Direct Use

Reveal can be used for:
- Research on **unsupervised anomaly detection** in system telemetry  
- Modeling **multivariate time-series** from hardware metrics  
- Studying **cross-subsystem interactions** (CPU, GPU, memory, network, storage)  
- Developing **performance-aware ML infrastructure tools**  
- Training or benchmarking anomaly detection models for **AIOps** and **ML system health monitoring**

### Out-of-Scope Use

The dataset **should not** be used for:
- Inferring or reconstructing user workloads or model behavior  
- Benchmarking end-user application performance  
- Any use involving personal, confidential, or proprietary data reconstruction  

---

## Dataset Structure

Reveal consists of time-series telemetry, derived features, and automatically labeled anomaly segments.



**Core fields include:**
- `timestamp`: UTC time of sample  
- `host_id`: host or node identifier  
- `metric_name`: name of the measured counter  
- `value`: recorded numeric value  
- `subsystem`: {CPU, GPU, Memory, Network, Storage}  

---

## Dataset Creation

### Curation Rationale

Modern ML workloads are complex and opaque to operators due to virtualization and containerization. Reveal was created to **enable infrastructure-level observability** and anomaly detection purely from hardware telemetry, without access to user workloads.

### Source Data

#### Data Collection and Processing

- Collected using: `perf`, `procfs`, `nvidia-smi`, and standard Linux utilities  
- Sampling interval: 100 ms  
- ~150 raw metric types per host, expanded to ~700 time-series channels   

#### Workloads and Systems

- **Workloads:** >30 ML applications (BERT, BART, ResNet, ViT, VGG, DeepSeek, LLaMA, Mistral)  
- **Datasets:** GLUE/SST2, WikiSQL, PASCAL VOC, CIFAR, MNIST  
- **Systems:**  
  - Dual-node GPU HPC cluster (NVIDIA V100 & H100, Intel Xeon CPUs, InfiniBand HDR100)  

#### Who are the data producers?

All data was generated by the authors in controlled environments using synthetic workloads.  
No user or private information is included.

### Annotations

#### Personal and Sensitive Information
No personal, identifiable, or proprietary data.  
All records are machine telemetry and anonymized.

---

## Bias, Risks, and Limitations

- Collected on specific hardware (NVIDIA/AMD CPUs, NVIDIA GPUs); behavior may differ on other architectures.  
- Reflects **controlled test conditions**, not production cloud variability.  

---

## Citation

**BibTeX:**
```bibtex
@article{chen2025reveal,
  title={Detecting Anomalies in Systems for AI Using Hardware Telemetry},
  author={Chen, Ziji and Chien, Steven W. D. and Qian, Peng and Zilberman, Noa},
  journal={arXiv preprint arXiv:submit/6934461},
  year={2025}
}