ronantakizawa commited on
Commit
f5389d0
·
verified ·
1 Parent(s): eacb44f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +98 -19
README.md CHANGED
@@ -18,7 +18,7 @@ configs:
18
  - config_name: default
19
  data_files:
20
  - split: train
21
- path: "aozorabunko_with_difficulty_5k_clean.csv"
22
  dataset_info:
23
  features:
24
  - name: text
@@ -70,13 +70,14 @@ dataset_info:
70
 
71
  # Aozora Text Difficulty Dataset
72
 
73
- This dataset contains Japanese literary texts from the [Aozora Bunko](https://www.aozora.gr.jp/) digital library, enhanced with comprehensive difficulty analysis scores for Japanese language learning and curriculum development.
74
 
75
  ## Dataset Overview
76
 
77
  - **Source**: Aozora Bunko (青空文庫) - Japan's premier digital library of public domain literature
78
- - **Enhancement**: Comprehensive linguistic difficulty analysis using authentic Japanese language resources
79
- - **Use Cases**: Japanese language curriculum design, reading level assessment, adaptive learning systems
 
80
  - **License**: Original Aozora Bunko texts are public domain; analysis code and scores are provided under open source terms
81
 
82
  ## 📊 Dataset Structure
@@ -101,7 +102,7 @@ This dataset contains Japanese literary texts from the [Aozora Bunko](https://ww
101
 
102
  | Column | Type | Range | Description |
103
  |--------|------|-------|-------------|
104
- | **`overall_difficulty`** | float64 | 0.0-1.0 | **Primary difficulty score** combining all linguistic factors |
105
  | **`kanji_difficulty`** | float64 | 0.0-1.0 | Complexity based on kanji grade levels and density |
106
  | **`lexical_difficulty`** | float64 | 0.0-1.0 | Vocabulary complexity using authentic frequency data |
107
  | **`grammar_complexity`** | float64 | 0.0-1.0 | Grammatical structure complexity |
@@ -134,16 +135,24 @@ This dataset contains Japanese literary texts from the [Aozora Bunko](https://ww
134
 
135
  ## 🎯 Difficulty Calculation Methodology
136
 
137
- ### **Overall Difficulty Formula**
 
 
 
 
138
  ```
139
- overall_difficulty = (
140
- 0.30 × kanji_difficulty + # Kanji complexity (30%)
141
- 0.25 × lexical_difficulty + # Vocabulary difficulty (25%)
142
- 0.25 × grammar_complexity + # Grammar complexity (25%)
143
- 0.20 × sentence_complexity # Sentence structure (20%)
144
- )
145
  ```
146
 
 
 
 
 
147
  ### **Curriculum Level Classification**
148
  - **Beginner** (0.00-0.19): Basic modern Japanese
149
  - **Elementary** (0.20-0.34): Simple literary texts
@@ -151,20 +160,52 @@ overall_difficulty = (
151
  - **Advanced** (0.55-0.74): Complex literary language
152
  - **Expert** (0.75-1.00): Classical or highly sophisticated texts
153
 
154
- ### **Authentic Data Sources**
155
- 1. **Kanji Grades**: 3,003 kanji with official educational grades from [kanjiapi.dev](https://kanjiapi.dev)
156
- 2. **Word Frequencies**: [wordfreq](https://github.com/rspeer/wordfreq) library with real corpus data
157
  3. **Grammar Analysis**: Pattern-based complexity scoring using formal Japanese constructions
 
 
 
 
 
 
158
 
159
  ---
160
 
161
  ## 📈 Dataset Statistics
162
 
 
 
 
 
 
 
 
 
 
 
163
  - **Text Length**: 50 - 532,561 characters (mean: ~11,285)
164
  - **Kanji Density**: 29.4% average
165
  - **Average Joyo Grade**: 3.71 (elementary-intermediate level)
166
  - **Lexical Diversity**: 0.270 (moderate vocabulary variation)
167
- - **Difficulty Distribution**: 18.3% Elementary, 81.7% Intermediate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
  ---
170
 
@@ -215,16 +256,54 @@ elementary_kanji = df[df['joyo_grade_avg'] <= 4.0]
215
  ## 🎓 Applications
216
 
217
  - **Language Learning**: Personalized reading recommendations based on learner level
218
- - **Curriculum Design**: Structured progression of reading materials
219
- - **Assessment Tools**: Automatic text difficulty evaluation for placement
220
- - **Research**: Japanese language complexity and readability analysis
221
  - **EdTech**: Adaptive learning system development and content curation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
223
  ---
224
 
225
  ## 🔗 Related Datasets
226
 
227
  - [Japanese Character Difficulty Dataset](https://huggingface.co/datasets/ronantakizawa/japanese-character-difficulty) - Kanji grades used in this analysis
 
228
 
229
  ---
230
 
 
18
  - config_name: default
19
  data_files:
20
  - split: train
21
+ path: "aozorabunko_with_jreadability_5k.csv"
22
  dataset_info:
23
  features:
24
  - name: text
 
70
 
71
  # Aozora Text Difficulty Dataset
72
 
73
+ This dataset contains Japanese literary texts from the [Aozora Bunko](https://www.aozora.gr.jp/) digital library, enhanced with **jReadability-based difficulty analysis** for Japanese language learning and curriculum development.
74
 
75
  ## Dataset Overview
76
 
77
  - **Source**: Aozora Bunko (青空文庫) - Japan's premier digital library of public domain literature
78
+ - **Enhancement**: jReadability-based difficulty scoring using research-backed Japanese readability models
79
+ - **Primary Methodology**: [jReadability](https://github.com/joshdavham/jreadability) - A Python implementation of Lee & Hasebe's Japanese readability evaluation system
80
+ - **Use Cases**: Japanese language curriculum design, reading level assessment, adaptive learning systems, difficulty-controlled text generation
81
  - **License**: Original Aozora Bunko texts are public domain; analysis code and scores are provided under open source terms
82
 
83
  ## 📊 Dataset Structure
 
102
 
103
  | Column | Type | Range | Description |
104
  |--------|------|-------|-------------|
105
+ | **`overall_difficulty`** | float64 | 0.0-1.0 | **Primary difficulty score** based on jReadability model |
106
  | **`kanji_difficulty`** | float64 | 0.0-1.0 | Complexity based on kanji grade levels and density |
107
  | **`lexical_difficulty`** | float64 | 0.0-1.0 | Vocabulary complexity using authentic frequency data |
108
  | **`grammar_complexity`** | float64 | 0.0-1.0 | Grammatical structure complexity |
 
135
 
136
  ## 🎯 Difficulty Calculation Methodology
137
 
138
+ ### **Primary Difficulty Score: jReadability Model**
139
+
140
+ The `overall_difficulty` score is calculated using the [jReadability](https://github.com/joshdavham/jreadability) Python library, which implements the research-backed Japanese readability model developed by **Jae-ho Lee and Yoichiro Hasebe**.
141
+
142
+ **jReadability Model Formula:**
143
  ```
144
+ readability = {mean words per sentence} × -0.056
145
+ + {percentage of kango} × -0.126 # Chinese-origin words
146
+ + {percentage of wago} × -0.042 # Native Japanese words
147
+ + {percentage of verbs} × -0.145
148
+ + {percentage of particles} × -0.044
149
+ + 11.724
150
  ```
151
 
152
+ **Score Normalization:**
153
+ - jReadability output: 0.5-6.5 (higher = easier)
154
+ - Our normalization: `(6.5 - jreadability_score) / 6.0` → 0-1 scale (higher = harder)
155
+
156
  ### **Curriculum Level Classification**
157
  - **Beginner** (0.00-0.19): Basic modern Japanese
158
  - **Elementary** (0.20-0.34): Simple literary texts
 
160
  - **Advanced** (0.55-0.74): Complex literary language
161
  - **Expert** (0.75-1.00): Classical or highly sophisticated texts
162
 
163
+ ### **Supporting Linguistic Metrics**
164
+ 1. **Kanji Analysis**: 3,003 kanji with official educational grades from [kanjiapi.dev](https://kanjiapi.dev)
165
+ 2. **Vocabulary Analysis**: [wordfreq](https://github.com/rspeer/wordfreq) library with real corpus data
166
  3. **Grammar Analysis**: Pattern-based complexity scoring using formal Japanese constructions
167
+ 4. **Sentence Analysis**: Length variation and structural complexity measures
168
+
169
+ ### **Research Foundation**
170
+ - **Lee, J. & Hasebe, Y.** *Introducing a readability evaluation system for Japanese language education*
171
+ - **Lee, J. & Hasebe, Y.** *Readability measurement of Japanese texts based on levelled corpora*
172
+ - Model specifically designed for **non-native Japanese learners** (not native speaker grade levels)
173
 
174
  ---
175
 
176
  ## 📈 Dataset Statistics
177
 
178
+ **jReadability-Based Analysis Results (5,000 texts):**
179
+ - **Overall Difficulty**: Mean 0.547 (0.0-1.0 scale)
180
+ - **Difficulty Distribution**:
181
+ - Beginner: 97 texts (1.9%)
182
+ - Elementary: 552 texts (11.0%)
183
+ - Intermediate: 2,047 texts (40.9%)
184
+ - Advanced: 1,690 texts (33.8%)
185
+ - Expert: 614 texts (12.3%)
186
+
187
+ **Text Characteristics:**
188
  - **Text Length**: 50 - 532,561 characters (mean: ~11,285)
189
  - **Kanji Density**: 29.4% average
190
  - **Average Joyo Grade**: 3.71 (elementary-intermediate level)
191
  - **Lexical Diversity**: 0.270 (moderate vocabulary variation)
192
+
193
+ ---
194
+
195
+ ## 🔬 jReadability Advantages
196
+
197
+ ### **Why jReadability?**
198
+ 1. **Research-Backed**: Based on empirical studies of Japanese learner corpora
199
+ 2. **Learner-Focused**: Designed specifically for non-native Japanese speakers
200
+ 3. **Linguistic Sophistication**: Considers Japanese-specific features (kango/wago ratios, particle usage)
201
+ 4. **Reproducible**: Standardized implementation with consistent results
202
+ 5. **Validated**: Published research with proven correlation to learner difficulty perception
203
+
204
+ ### **Improvements Over Composite Scoring**
205
+ - **Holistic Assessment**: Considers text as a unified linguistic entity rather than separate features
206
+ - **Native Speaker Bias Reduction**: Avoids assumptions based on native speaker intuitions
207
+ - **Empirical Foundation**: Based on actual learner performance data
208
+ - **Standardized Scale**: Consistent 6-level difficulty assessment widely used in Japanese education
209
 
210
  ---
211
 
 
256
  ## 🎓 Applications
257
 
258
  - **Language Learning**: Personalized reading recommendations based on learner level
259
+ - **Curriculum Design**: Structured progression of reading materials using research-backed difficulty assessment
260
+ - **Assessment Tools**: Automatic text difficulty evaluation for placement using jReadability standards
261
+ - **Research**: Japanese language complexity and readability analysis with validated metrics
262
  - **EdTech**: Adaptive learning system development and content curation
263
+ - **Text Generation**: Difficulty-controlled generation of Japanese educational content
264
+ - **Reading Comprehension**: Graded text selection for language learning platforms
265
+
266
+ ---
267
+
268
+ ## 🛠️ Technical Implementation
269
+
270
+ ### **jReadability Integration**
271
+ ```python
272
+ from jreadability import compute_readability
273
+
274
+ # Calculate jReadability score
275
+ jreadability_score = compute_readability(japanese_text)
276
+
277
+ # Normalize to 0-1 difficulty scale (0=easiest, 1=hardest)
278
+ overall_difficulty = max(0.0, min(1.0, (6.5 - jreadability_score) / 6.0))
279
+ ```
280
+
281
+ ### **Batch Processing**
282
+ For optimal performance when processing large datasets:
283
+ ```python
284
+ from fugashi import Tagger
285
+ from jreadability import compute_readability
286
+
287
+ # Initialize tagger once for batch processing
288
+ tagger = Tagger()
289
+
290
+ # Process multiple texts efficiently
291
+ for text in texts:
292
+ score = compute_readability(text, tagger) # Reuse tagger
293
+ ```
294
+
295
+ ### **Dependencies**
296
+ - **jreadability**: Research-backed Japanese readability calculation
297
+ - **fugashi**: Fast Japanese morphological analysis (MeCab wrapper)
298
+ - **unidic-lite**: Japanese linguistic resources
299
+ - **wordfreq**: Authentic Japanese word frequency data
300
 
301
  ---
302
 
303
  ## 🔗 Related Datasets
304
 
305
  - [Japanese Character Difficulty Dataset](https://huggingface.co/datasets/ronantakizawa/japanese-character-difficulty) - Kanji grades used in this analysis
306
+ - [jReadability GitHub](https://github.com/joshdavham/jreadability) - Original jReadability implementation
307
 
308
  ---
309