Upload MovielensLatest_x1
Browse files- MovielensLatest_x1.zip +3 -0
- README.md +21 -0
MovielensLatest_x1.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a809509dfce89d77ca0db2985a92033c829688c1a99af98f0ead0e0f79766d27
|
| 3 |
+
size 16151522
|
README.md
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MovielensLatest_x1
|
| 2 |
+
|
| 3 |
+
The MovieLens dataset consists of users' tagging records on movies. The task is formulated as personalized tag recommendation with each tagging record (user_id, item_id, tag_id) as an data instance. The target value denotes whether the user has assigned a particular tag to the movie. We provide the reusable, processed dataset released by [the BARS benchmark](https://openbenchmark.github.io), which are randomly split into 7:2:1 as the training set, validation set, and test set, respectively.
|
| 4 |
+
|
| 5 |
+
### Dataset Details
|
| 6 |
+
|
| 7 |
+
+ **Repository:** https://github.com/reczoo/BARS/blob/main/datasets/MovieLens/README.md#movielenslatest_x1
|
| 8 |
+
|
| 9 |
+
+ **Used by papers:**
|
| 10 |
+
- Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
|
| 11 |
+
- Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
|
| 12 |
+
- Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
|
| 13 |
+
|
| 14 |
+
+ **Check the md5sum for data integrity:**
|
| 15 |
+
|
| 16 |
+
```bash
|
| 17 |
+
$ md5sum train.csv valid.csv test.csv
|
| 18 |
+
efc8bceeaa0e895d566470fc99f3f271 train.csv
|
| 19 |
+
e1930223a5026e910ed5a48687de8af1 valid.csv
|
| 20 |
+
54e8c6baff2e059fe067fb9b69e692d0 test.csv
|
| 21 |
+
```
|