Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
64b97a1
·
verified ·
1 Parent(s): ae76339

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +177 -51
README.md CHANGED
@@ -1,61 +1,187 @@
1
  ---
2
- license: cc0-1.0
3
- task_categories:
4
- - table-question-answering
5
  language:
6
- - en
 
 
7
  size_categories:
8
  - 1K<n<10K
 
 
 
 
9
  dataset_info:
10
- - config_name: default
11
- features:
12
- - name: query-id
13
- dtype: string
14
- - name: corpus-id
15
- dtype: string
16
- - name: score
17
- dtype: float64
18
- splits:
19
- - name: test
20
- num_examples: 2048
21
- - config_name: corpus
22
- features:
23
- - name: _id
24
- dtype: string
25
- - name: title
26
- dtype: string
27
- - name: text
28
- dtype: string
29
- splits:
30
- - name: corpus
31
- num_examples: 2048
32
- - config_name: queries
33
- features:
34
- - name: _id
35
- dtype: string
36
- - name: text
37
- dtype: string
38
- splits:
39
- - name: queries
40
- num_examples: 2048
41
-
42
  configs:
43
- - config_name: default
44
- data_files:
45
- - split: test
46
- path: default.jsonl
47
- - config_name: corpus
48
- data_files:
49
- - split: corpus
50
- path: corpus.jsonl
51
- - config_name: queries
52
- data_files:
53
- - split: queries
54
- path: queries.jsonl
 
 
 
55
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- # Dataset Card for Dataset Name
 
58
 
59
- ## Dataset Details
60
- The MedQuad dataset normalised for use with mteb. The dataset contains questions and answers related to medical conditions, treatments, and protocols
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
 
4
  language:
5
+ - eng
6
+ license: cc0-1.0
7
+ multilinguality: monolingual
8
  size_categories:
9
  - 1K<n<10K
10
+ task_categories:
11
+ - text-retrieval
12
+ task_ids:
13
+ - Article retrieval
14
  dataset_info:
15
+ - config_name: default
16
+ features:
17
+ - name: query-id
18
+ dtype: string
19
+ - name: corpus-id
20
+ dtype: string
21
+ - name: score
22
+ dtype: float64
23
+ splits:
24
+ - name: test
25
+ num_examples: 2048
26
+ - config_name: corpus
27
+ features:
28
+ - name: _id
29
+ dtype: string
30
+ - name: title
31
+ dtype: string
32
+ - name: text
33
+ dtype: string
34
+ splits:
35
+ - name: corpus
36
+ num_examples: 2048
37
+ - config_name: queries
38
+ features:
39
+ - name: _id
40
+ dtype: string
41
+ - name: text
42
+ dtype: string
43
+ splits:
44
+ - name: queries
45
+ num_examples: 2048
 
46
  configs:
47
+ - config_name: default
48
+ data_files:
49
+ - split: test
50
+ path: default.jsonl
51
+ - config_name: corpus
52
+ data_files:
53
+ - split: corpus
54
+ path: corpus.jsonl
55
+ - config_name: queries
56
+ data_files:
57
+ - split: queries
58
+ path: queries.jsonl
59
+ tags:
60
+ - mteb
61
+ - text
62
  ---
63
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
64
+
65
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
66
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MedicalQARetrieval</h1>
67
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
68
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
69
+ </div>
70
+
71
+ The dataset consists 2048 medical question and answer pairs.
72
+
73
+ | | |
74
+ |---------------|---------------------------------------------|
75
+ | Task category | t2t |
76
+ | Domains | Medical, Written |
77
+ | Reference | https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4 |
78
+
79
+
80
+ ## How to evaluate on this task
81
+
82
+ You can evaluate an embedding model on this dataset using the following code:
83
+
84
+ ```python
85
+ import mteb
86
+
87
+ task = mteb.get_tasks(["MedicalQARetrieval"])
88
+ evaluator = mteb.MTEB(task)
89
+
90
+ model = mteb.get_model(YOUR_MODEL)
91
+ evaluator.run(model)
92
+ ```
93
 
94
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
95
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
96
 
97
+ ## Citation
 
98
 
99
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
100
+
101
+ ```bibtex
102
+
103
+ @article{BenAbacha-BMC-2019,
104
+ author = {Asma, Ben Abacha and Dina, Demner{-}Fushman},
105
+ journal = {{BMC} Bioinform.},
106
+ number = {1},
107
+ pages = {511:1--511:23},
108
+ title = {A Question-Entailment Approach to Question Answering},
109
+ url = {https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4},
110
+ volume = {20},
111
+ year = {2019},
112
+ }
113
+
114
+
115
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
116
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
117
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
118
+ publisher = {arXiv},
119
+ journal={arXiv preprint arXiv:2502.13595},
120
+ year={2025},
121
+ url={https://arxiv.org/abs/2502.13595},
122
+ doi = {10.48550/arXiv.2502.13595},
123
+ }
124
+
125
+ @article{muennighoff2022mteb,
126
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
127
+ title = {MTEB: Massive Text Embedding Benchmark},
128
+ publisher = {arXiv},
129
+ journal={arXiv preprint arXiv:2210.07316},
130
+ year = {2022}
131
+ url = {https://arxiv.org/abs/2210.07316},
132
+ doi = {10.48550/ARXIV.2210.07316},
133
+ }
134
+ ```
135
+
136
+ # Dataset Statistics
137
+ <details>
138
+ <summary> Dataset Statistics</summary>
139
+
140
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
141
+
142
+ ```python
143
+ import mteb
144
+
145
+ task = mteb.get_task("MedicalQARetrieval")
146
+
147
+ desc_stats = task.metadata.descriptive_stats
148
+ ```
149
+
150
+ ```json
151
+ {
152
+ "test": {
153
+ "num_samples": 4096,
154
+ "number_of_characters": 2471858,
155
+ "num_documents": 2048,
156
+ "min_document_length": 7,
157
+ "average_document_length": 1154.482421875,
158
+ "max_document_length": 14442,
159
+ "unique_documents": 2048,
160
+ "num_queries": 2048,
161
+ "min_query_length": 16,
162
+ "average_query_length": 52.4794921875,
163
+ "max_query_length": 191,
164
+ "unique_queries": 2048,
165
+ "none_queries": 0,
166
+ "num_relevant_docs": 2048,
167
+ "min_relevant_docs_per_query": 1,
168
+ "average_relevant_docs_per_query": 1.0,
169
+ "max_relevant_docs_per_query": 1,
170
+ "unique_relevant_docs": 2048,
171
+ "num_instructions": null,
172
+ "min_instruction_length": null,
173
+ "average_instruction_length": null,
174
+ "max_instruction_length": null,
175
+ "unique_instructions": null,
176
+ "num_top_ranked": null,
177
+ "min_top_ranked_per_query": null,
178
+ "average_top_ranked_per_query": null,
179
+ "max_top_ranked_per_query": null
180
+ }
181
+ }
182
+ ```
183
+
184
+ </details>
185
+
186
+ ---
187
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*