VibecoderMcSwaggins commited on
Commit
0d62dc9
·
verified ·
1 Parent(s): ea5fc42

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +290 -0
README.md ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ task_categories:
4
+ - image-segmentation
5
+ - image-classification
6
+ language:
7
+ - en
8
+ tags:
9
+ - medical
10
+ - neuroimaging
11
+ - mri
12
+ - brain
13
+ - stroke
14
+ - aphasia
15
+ - BIDS
16
+ - diffusion
17
+ - fMRI
18
+ size_categories:
19
+ - n<1K
20
+ ---
21
+
22
+ # Aphasia Recovery Cohort (ARC)
23
+
24
+ Multimodal neuroimaging dataset for stroke-induced aphasia research.
25
+
26
+ ## Dataset Summary
27
+
28
+ The Aphasia Recovery Cohort (ARC) is a large-scale, longitudinal neuroimaging dataset containing multimodal MRI scans from **230 chronic stroke patients** with aphasia. This HuggingFace-hosted version provides direct Python access to the BIDS-formatted data with embedded NIfTI files.
29
+
30
+ | Metric | Count |
31
+ |--------|-------|
32
+ | Subjects | 230 |
33
+ | Sessions | 902 |
34
+ | T1-weighted scans | 441 sessions* |
35
+ | T2-weighted scans | 439 sessions* |
36
+ | FLAIR scans | 231 sessions* |
37
+ | BOLD fMRI (naming40 task) | 750 sessions (894 runs) |
38
+ | BOLD fMRI (resting state) | 498 sessions (508 runs) |
39
+ | Diffusion (DWI) | 613 sessions (2,089 runs) |
40
+ | Single-band reference | 88 sessions (322 runs) |
41
+ | Expert lesion masks | 228 |
42
+
43
+ *Sessions with exactly one scan. Sessions with multiple runs of the same structural modality are set to `None` to avoid ambiguity (3 T1w, 1 T2w, 2 FLAIR sessions affected).
44
+
45
+ - **Source:** [OpenNeuro ds004884](https://openneuro.org/datasets/ds004884)
46
+ - **Paper:** [Gibson et al., Scientific Data 2024](https://doi.org/10.1038/s41597-024-03819-7)
47
+ - **License:** CC0 1.0 (Public Domain)
48
+
49
+ ## Supported Tasks
50
+
51
+ - **Lesion Segmentation:** Expert-drawn lesion masks enable training/evaluation of stroke lesion segmentation models
52
+ - **Aphasia Severity Prediction:** WAB-AQ scores (0-100) provide continuous severity labels for regression tasks
53
+ - **Aphasia Type Classification:** WAB-derived aphasia type labels (Broca's, Wernicke's, Anomic, etc.)
54
+ - **Longitudinal Analysis:** Multiple sessions per subject enable recovery trajectory modeling
55
+ - **Diffusion Analysis:** Full bval/bvec gradients enable tractography and diffusion modeling
56
+ - **Task-based fMRI:** Naming40 and resting-state runs separated for targeted analysis
57
+
58
+ ## Languages
59
+
60
+ Clinical metadata and documentation are in English.
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Instance
65
+
66
+ Each row represents a single scanning session (subject + timepoint):
67
+
68
+ ```python
69
+ {
70
+ "subject_id": "sub-M2001",
71
+ "session_id": "ses-1",
72
+ "t1w": <nibabel.Nifti1Image>, # T1-weighted structural
73
+ "t2w": <nibabel.Nifti1Image>, # T2-weighted structural
74
+ "t2w_acquisition": "space_2x", # T2w sequence type
75
+ "flair": <nibabel.Nifti1Image>, # FLAIR structural
76
+ "bold_naming40": [<Nifti1Image>, ...], # Naming task fMRI runs
77
+ "bold_rest": [<Nifti1Image>, ...], # Resting state fMRI runs
78
+ "dwi": [<Nifti1Image>, ...], # Diffusion runs
79
+ "dwi_bvals": ["0 1000 1000...", ...], # b-values per run
80
+ "dwi_bvecs": ["0 0 0\n1 0 0\n...", ...], # b-vectors per run
81
+ "sbref": [<Nifti1Image>, ...], # Single-band references
82
+ "lesion": <nibabel.Nifti1Image>, # Expert lesion mask
83
+ "age_at_stroke": 58.0,
84
+ "sex": "M",
85
+ "race": "w",
86
+ "wab_aq": 72.5,
87
+ "wab_days": 180.0,
88
+ "wab_type": "Anomic"
89
+ }
90
+ ```
91
+
92
+ ### Data Fields
93
+
94
+ | Field | Type | Description |
95
+ |-------|------|-------------|
96
+ | `subject_id` | string | BIDS subject identifier (e.g., "sub-M2001") |
97
+ | `session_id` | string | BIDS session identifier (e.g., "ses-1") |
98
+ | `t1w` | Nifti | T1-weighted structural MRI (nullable) |
99
+ | `t2w` | Nifti | T2-weighted structural MRI (nullable) |
100
+ | `t2w_acquisition` | string | T2w acquisition type: `space_2x`, `space_no_accel`, `turbo_spin_echo` (nullable) |
101
+ | `flair` | Nifti | FLAIR structural MRI (nullable) |
102
+ | `bold_naming40` | Sequence[Nifti] | BOLD fMRI runs for naming40 task |
103
+ | `bold_rest` | Sequence[Nifti] | BOLD fMRI runs for resting state |
104
+ | `dwi` | Sequence[Nifti] | Diffusion-weighted imaging runs |
105
+ | `dwi_bvals` | Sequence[string] | b-values for each DWI run (space-separated) |
106
+ | `dwi_bvecs` | Sequence[string] | b-vectors for each DWI run (3 lines, space-separated) |
107
+ | `sbref` | Sequence[Nifti] | Single-band reference images |
108
+ | `lesion` | Nifti | Expert-drawn lesion segmentation mask (nullable) |
109
+ | `age_at_stroke` | float32 | Subject age at stroke onset in years |
110
+ | `sex` | string | Biological sex ("M" or "F") |
111
+ | `race` | string | Self-reported race: "b" (Black), "w" (White), or null |
112
+ | `wab_aq` | float32 | Western Aphasia Battery Aphasia Quotient (0-100) |
113
+ | `wab_days` | float32 | Days since stroke when WAB was administered |
114
+ | `wab_type` | string | Aphasia type classification |
115
+
116
+ ### Data Splits
117
+
118
+ | Split | Sessions | Description |
119
+ |-------|----------|-------------|
120
+ | train | 902 | All sessions (no predefined train/test split) |
121
+
122
+ Note: Users should implement their own train/validation/test splits, ensuring no subject overlap between splits for valid evaluation.
123
+
124
+ ## Dataset Creation
125
+
126
+ ### Curation Rationale
127
+
128
+ The ARC dataset was created to address the lack of large-scale, publicly available neuroimaging data for aphasia research. It enables:
129
+
130
+ - Development of automated lesion segmentation algorithms
131
+ - Machine learning models for aphasia severity prediction
132
+ - Studies of brain plasticity and language recovery
133
+
134
+ ### Source Data
135
+
136
+ Data were acquired under studies approved by the Institutional Review Board at the University of South Carolina (per the OpenNeuro ds004884 `dataset_description.json`).
137
+
138
+ ### Annotations
139
+
140
+ Expert-drawn lesion segmentation masks are provided in `derivatives/lesion_masks/`.
141
+
142
+ ## Personal and Sensitive Information
143
+
144
+ - **Anonymized:** OpenNeuro ds004884 `dataset_description.json` states the final dataset is fully anonymised.
145
+
146
+ ## Considerations for Using the Data
147
+
148
+ ### Social Impact
149
+
150
+ This dataset enables research into:
151
+
152
+ - Improved stroke rehabilitation through better outcome prediction
153
+ - Automated clinical tools for aphasia assessment
154
+ - Understanding of brain-language relationships
155
+
156
+ ### Potential Biases
157
+
158
+ - **Site:** Data were acquired under University of South Carolina IRB approval (per OpenNeuro metadata)
159
+ - **Age:** Adult cohort (`age_at_stroke` ranges from 27 to 80 years in participants.tsv)
160
+
161
+ ### Known Limitations
162
+
163
+ - Not all sessions have all modalities (check for None/empty lists)
164
+ - Lesion masks available for 228/230 subjects
165
+ - Longitudinal follow-up varies by subject (1-30 sessions)
166
+
167
+ ## Usage
168
+
169
+ ```python
170
+ from datasets import load_dataset
171
+
172
+ ds = load_dataset("hugging-science/arc-aphasia-bids", split="train")
173
+
174
+ # Access a session
175
+ session = ds[0]
176
+ print(session["subject_id"]) # "sub-M2001"
177
+ print(session["t1w"]) # nibabel.Nifti1Image
178
+ print(session["wab_aq"]) # Aphasia severity score
179
+
180
+ # Access BOLD by task type
181
+ for run in session["bold_naming40"]:
182
+ print(f"Naming40 run shape: {run.shape}")
183
+
184
+ for run in session["bold_rest"]:
185
+ print(f"Resting state run shape: {run.shape}")
186
+
187
+ # Access DWI with gradient information
188
+ for i, (dwi_run, bval, bvec) in enumerate(zip(
189
+ session["dwi"], session["dwi_bvals"], session["dwi_bvecs"]
190
+ )):
191
+ print(f"DWI run {i+1}: shape={dwi_run.shape}")
192
+ print(f" b-values: {bval[:50]}...")
193
+ print(f" b-vectors: {bvec[:50]}...")
194
+
195
+ # Filter by T2w acquisition type (for paper replication)
196
+ space_only = ds.filter(
197
+ lambda x: (
198
+ x["lesion"] is not None
199
+ and x["t2w"] is not None
200
+ and x["t2w_acquisition"] in ("space_2x", "space_no_accel")
201
+ )
202
+ )
203
+ # Returns 222 SPACE samples (115 space_2x + 107 space_no_accel)
204
+
205
+ # Clinical metadata analysis
206
+ import pandas as pd
207
+
208
+ # Select only scalar columns to avoid loading NIfTI columns into RAM
209
+ df = ds.select_columns([
210
+ "subject_id", "session_id", "age_at_stroke",
211
+ "sex", "race", "wab_aq", "wab_days", "wab_type"
212
+ ]).to_pandas()
213
+ print(df.describe())
214
+ ```
215
+
216
+ ## Technical Notes
217
+
218
+ ### Multi-Run Modalities
219
+
220
+ Functional and diffusion modalities support multiple runs per session:
221
+
222
+ - Empty list `[]` = no data for this session
223
+ - List with items = all runs for this session, sorted by filename
224
+
225
+ ### DWI Gradient Files
226
+
227
+ Each DWI run has aligned gradient information:
228
+
229
+ - `dwi_bvals`: Space-separated b-values (e.g., "0 1000 1000 1000...")
230
+ - `dwi_bvecs`: Three lines of space-separated vectors (x, y, z directions)
231
+
232
+ These are essential for diffusion tensor imaging (DTI) and tractography analysis.
233
+
234
+ ### Memory Considerations
235
+
236
+ NIfTI files are loaded on-demand. For large-scale processing:
237
+
238
+ ```python
239
+ for session in ds:
240
+ process(session)
241
+ # Data is garbage collected after each iteration
242
+ ```
243
+
244
+ ### Original BIDS Source
245
+
246
+ This dataset is derived from [OpenNeuro ds004884](https://openneuro.org/datasets/ds004884). The original BIDS structure is preserved in the column naming and organization.
247
+
248
+ ## Additional Information
249
+
250
+ ### Dataset Curators
251
+
252
+ - **Original Dataset:** Gibson et al. (University of South Carolina)
253
+ - **HuggingFace Conversion:** The-Obstacle-Is-The-Way
254
+
255
+ ### Licensing
256
+
257
+ This dataset is released under **CC0 1.0 Universal (Public Domain)**. You can copy, modify, distribute, and perform the work, even for commercial purposes, all without asking permission.
258
+
259
+ ## Citation
260
+
261
+ ```bibtex
262
+ @article{gibson2024arc,
263
+ title={The Aphasia Recovery Cohort, an open-source chronic stroke repository},
264
+ author={Gibson, Makayla and Newman-Norlund, Roger and Bonilha, Leonardo and Fridriksson, Julius and Hickok, Gregory and Hillis, Argye E and den Ouden, Dirk-Bart and Rorden, Christopher},
265
+ journal={Scientific Data},
266
+ volume={11},
267
+ pages={981},
268
+ year={2024},
269
+ publisher={Nature Publishing Group},
270
+ doi={10.1038/s41597-024-03819-7}
271
+ }
272
+ ```
273
+
274
+ ## Contributions
275
+
276
+ Thanks to [@The-Obstacle-Is-The-Way](https://github.com/The-Obstacle-Is-The-Way) for converting this dataset to HuggingFace format with native `Nifti()` feature support.
277
+
278
+ ## Changelog
279
+
280
+ ### v2 (December 2025)
281
+
282
+ - **BREAKING:** `bold` column split into `bold_naming40` and `bold_rest` for task-specific analysis
283
+ - **NEW:** `dwi_bvals` and `dwi_bvecs` columns for diffusion gradient information
284
+ - **NEW:** `race` column from participants.tsv
285
+ - **NEW:** `wab_days` column (days since stroke when WAB administered)
286
+ - **NEW:** `t2w_acquisition` column for T2w sequence type filtering
287
+
288
+ ### v1 (December 2025)
289
+
290
+ - Initial release with 13 columns