Add dataset card
Browse files
README.md
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc0-1.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-segmentation
|
| 5 |
+
- image-classification
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- medical
|
| 10 |
+
- neuroimaging
|
| 11 |
+
- mri
|
| 12 |
+
- brain
|
| 13 |
+
- stroke
|
| 14 |
+
- aphasia
|
| 15 |
+
- BIDS
|
| 16 |
+
- diffusion
|
| 17 |
+
- fMRI
|
| 18 |
+
size_categories:
|
| 19 |
+
- n<1K
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# Aphasia Recovery Cohort (ARC)
|
| 23 |
+
|
| 24 |
+
Multimodal neuroimaging dataset for stroke-induced aphasia research.
|
| 25 |
+
|
| 26 |
+
## Dataset Summary
|
| 27 |
+
|
| 28 |
+
The Aphasia Recovery Cohort (ARC) is a large-scale, longitudinal neuroimaging dataset containing multimodal MRI scans from **230 chronic stroke patients** with aphasia. This HuggingFace-hosted version provides direct Python access to the BIDS-formatted data with embedded NIfTI files.
|
| 29 |
+
|
| 30 |
+
| Metric | Count |
|
| 31 |
+
|--------|-------|
|
| 32 |
+
| Subjects | 230 |
|
| 33 |
+
| Sessions | 902 |
|
| 34 |
+
| T1-weighted scans | 441 sessions* |
|
| 35 |
+
| T2-weighted scans | 439 sessions* |
|
| 36 |
+
| FLAIR scans | 231 sessions* |
|
| 37 |
+
| BOLD fMRI (naming40 task) | 750 sessions (894 runs) |
|
| 38 |
+
| BOLD fMRI (resting state) | 498 sessions (508 runs) |
|
| 39 |
+
| Diffusion (DWI) | 613 sessions (2,089 runs) |
|
| 40 |
+
| Single-band reference | 88 sessions (322 runs) |
|
| 41 |
+
| Expert lesion masks | 228 |
|
| 42 |
+
|
| 43 |
+
*Sessions with exactly one scan. Sessions with multiple runs of the same structural modality are set to `None` to avoid ambiguity (3 T1w, 1 T2w, 2 FLAIR sessions affected).
|
| 44 |
+
|
| 45 |
+
- **Source:** [OpenNeuro ds004884](https://openneuro.org/datasets/ds004884)
|
| 46 |
+
- **Paper:** [Gibson et al., Scientific Data 2024](https://doi.org/10.1038/s41597-024-03819-7)
|
| 47 |
+
- **License:** CC0 1.0 (Public Domain)
|
| 48 |
+
|
| 49 |
+
## Supported Tasks
|
| 50 |
+
|
| 51 |
+
- **Lesion Segmentation:** Expert-drawn lesion masks enable training/evaluation of stroke lesion segmentation models
|
| 52 |
+
- **Aphasia Severity Prediction:** WAB-AQ scores (0-100) provide continuous severity labels for regression tasks
|
| 53 |
+
- **Aphasia Type Classification:** WAB-derived aphasia type labels (Broca's, Wernicke's, Anomic, etc.)
|
| 54 |
+
- **Longitudinal Analysis:** Multiple sessions per subject enable recovery trajectory modeling
|
| 55 |
+
- **Diffusion Analysis:** Full bval/bvec gradients enable tractography and diffusion modeling
|
| 56 |
+
- **Task-based fMRI:** Naming40 and resting-state runs separated for targeted analysis
|
| 57 |
+
|
| 58 |
+
## Languages
|
| 59 |
+
|
| 60 |
+
Clinical metadata and documentation are in English.
|
| 61 |
+
|
| 62 |
+
## Dataset Structure
|
| 63 |
+
|
| 64 |
+
### Data Instance
|
| 65 |
+
|
| 66 |
+
Each row represents a single scanning session (subject + timepoint):
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
{
|
| 70 |
+
"subject_id": "sub-M2001",
|
| 71 |
+
"session_id": "ses-1",
|
| 72 |
+
"t1w": <nibabel.Nifti1Image>, # T1-weighted structural
|
| 73 |
+
"t2w": <nibabel.Nifti1Image>, # T2-weighted structural
|
| 74 |
+
"t2w_acquisition": "space_2x", # T2w sequence type
|
| 75 |
+
"flair": <nibabel.Nifti1Image>, # FLAIR structural
|
| 76 |
+
"bold_naming40": [<Nifti1Image>, ...], # Naming task fMRI runs
|
| 77 |
+
"bold_rest": [<Nifti1Image>, ...], # Resting state fMRI runs
|
| 78 |
+
"dwi": [<Nifti1Image>, ...], # Diffusion runs
|
| 79 |
+
"dwi_bvals": ["0 1000 1000...", ...], # b-values per run
|
| 80 |
+
"dwi_bvecs": ["0 0 0\n1 0 0\n...", ...], # b-vectors per run
|
| 81 |
+
"sbref": [<Nifti1Image>, ...], # Single-band references
|
| 82 |
+
"lesion": <nibabel.Nifti1Image>, # Expert lesion mask
|
| 83 |
+
"age_at_stroke": 58.0,
|
| 84 |
+
"sex": "M",
|
| 85 |
+
"race": "w",
|
| 86 |
+
"wab_aq": 72.5,
|
| 87 |
+
"wab_days": 180.0,
|
| 88 |
+
"wab_type": "Anomic"
|
| 89 |
+
}
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Data Fields
|
| 93 |
+
|
| 94 |
+
| Field | Type | Description |
|
| 95 |
+
|-------|------|-------------|
|
| 96 |
+
| `subject_id` | string | BIDS subject identifier (e.g., "sub-M2001") |
|
| 97 |
+
| `session_id` | string | BIDS session identifier (e.g., "ses-1") |
|
| 98 |
+
| `t1w` | Nifti | T1-weighted structural MRI (nullable) |
|
| 99 |
+
| `t2w` | Nifti | T2-weighted structural MRI (nullable) |
|
| 100 |
+
| `t2w_acquisition` | string | T2w acquisition type: `space_2x`, `space_no_accel`, `turbo_spin_echo` (nullable) |
|
| 101 |
+
| `flair` | Nifti | FLAIR structural MRI (nullable) |
|
| 102 |
+
| `bold_naming40` | Sequence[Nifti] | BOLD fMRI runs for naming40 task |
|
| 103 |
+
| `bold_rest` | Sequence[Nifti] | BOLD fMRI runs for resting state |
|
| 104 |
+
| `dwi` | Sequence[Nifti] | Diffusion-weighted imaging runs |
|
| 105 |
+
| `dwi_bvals` | Sequence[string] | b-values for each DWI run (space-separated) |
|
| 106 |
+
| `dwi_bvecs` | Sequence[string] | b-vectors for each DWI run (3 lines, space-separated) |
|
| 107 |
+
| `sbref` | Sequence[Nifti] | Single-band reference images |
|
| 108 |
+
| `lesion` | Nifti | Expert-drawn lesion segmentation mask (nullable) |
|
| 109 |
+
| `age_at_stroke` | float32 | Subject age at stroke onset in years |
|
| 110 |
+
| `sex` | string | Biological sex ("M" or "F") |
|
| 111 |
+
| `race` | string | Self-reported race: "b" (Black), "w" (White), or null |
|
| 112 |
+
| `wab_aq` | float32 | Western Aphasia Battery Aphasia Quotient (0-100) |
|
| 113 |
+
| `wab_days` | float32 | Days since stroke when WAB was administered |
|
| 114 |
+
| `wab_type` | string | Aphasia type classification |
|
| 115 |
+
|
| 116 |
+
### Data Splits
|
| 117 |
+
|
| 118 |
+
| Split | Sessions | Description |
|
| 119 |
+
|-------|----------|-------------|
|
| 120 |
+
| train | 902 | All sessions (no predefined train/test split) |
|
| 121 |
+
|
| 122 |
+
Note: Users should implement their own train/validation/test splits, ensuring no subject overlap between splits for valid evaluation.
|
| 123 |
+
|
| 124 |
+
## Dataset Creation
|
| 125 |
+
|
| 126 |
+
### Curation Rationale
|
| 127 |
+
|
| 128 |
+
The ARC dataset was created to address the lack of large-scale, publicly available neuroimaging data for aphasia research. It enables:
|
| 129 |
+
|
| 130 |
+
- Development of automated lesion segmentation algorithms
|
| 131 |
+
- Machine learning models for aphasia severity prediction
|
| 132 |
+
- Studies of brain plasticity and language recovery
|
| 133 |
+
|
| 134 |
+
### Source Data
|
| 135 |
+
|
| 136 |
+
Data were acquired under studies approved by the Institutional Review Board at the University of South Carolina (per the OpenNeuro ds004884 `dataset_description.json`).
|
| 137 |
+
|
| 138 |
+
### Annotations
|
| 139 |
+
|
| 140 |
+
Expert-drawn lesion segmentation masks are provided in `derivatives/lesion_masks/`.
|
| 141 |
+
|
| 142 |
+
## Personal and Sensitive Information
|
| 143 |
+
|
| 144 |
+
- **Anonymized:** OpenNeuro ds004884 `dataset_description.json` states the final dataset is fully anonymised.
|
| 145 |
+
|
| 146 |
+
## Considerations for Using the Data
|
| 147 |
+
|
| 148 |
+
### Social Impact
|
| 149 |
+
|
| 150 |
+
This dataset enables research into:
|
| 151 |
+
|
| 152 |
+
- Improved stroke rehabilitation through better outcome prediction
|
| 153 |
+
- Automated clinical tools for aphasia assessment
|
| 154 |
+
- Understanding of brain-language relationships
|
| 155 |
+
|
| 156 |
+
### Potential Biases
|
| 157 |
+
|
| 158 |
+
- **Site:** Data were acquired under University of South Carolina IRB approval (per OpenNeuro metadata)
|
| 159 |
+
- **Age:** Adult cohort (`age_at_stroke` ranges from 27 to 80 years in participants.tsv)
|
| 160 |
+
|
| 161 |
+
### Known Limitations
|
| 162 |
+
|
| 163 |
+
- Not all sessions have all modalities (check for None/empty lists)
|
| 164 |
+
- Lesion masks available for 228/230 subjects
|
| 165 |
+
- Longitudinal follow-up varies by subject (1-30 sessions)
|
| 166 |
+
|
| 167 |
+
## Usage
|
| 168 |
+
|
| 169 |
+
```python
|
| 170 |
+
from datasets import load_dataset
|
| 171 |
+
|
| 172 |
+
ds = load_dataset("hugging-science/arc-aphasia-bids", split="train")
|
| 173 |
+
|
| 174 |
+
# Access a session
|
| 175 |
+
session = ds[0]
|
| 176 |
+
print(session["subject_id"]) # "sub-M2001"
|
| 177 |
+
print(session["t1w"]) # nibabel.Nifti1Image
|
| 178 |
+
print(session["wab_aq"]) # Aphasia severity score
|
| 179 |
+
|
| 180 |
+
# Access BOLD by task type
|
| 181 |
+
for run in session["bold_naming40"]:
|
| 182 |
+
print(f"Naming40 run shape: {run.shape}")
|
| 183 |
+
|
| 184 |
+
for run in session["bold_rest"]:
|
| 185 |
+
print(f"Resting state run shape: {run.shape}")
|
| 186 |
+
|
| 187 |
+
# Access DWI with gradient information
|
| 188 |
+
for i, (dwi_run, bval, bvec) in enumerate(zip(
|
| 189 |
+
session["dwi"], session["dwi_bvals"], session["dwi_bvecs"]
|
| 190 |
+
)):
|
| 191 |
+
print(f"DWI run {i+1}: shape={dwi_run.shape}")
|
| 192 |
+
print(f" b-values: {bval[:50]}...")
|
| 193 |
+
print(f" b-vectors: {bvec[:50]}...")
|
| 194 |
+
|
| 195 |
+
# Filter by T2w acquisition type (for paper replication)
|
| 196 |
+
space_only = ds.filter(
|
| 197 |
+
lambda x: (
|
| 198 |
+
x["lesion"] is not None
|
| 199 |
+
and x["t2w"] is not None
|
| 200 |
+
and x["t2w_acquisition"] in ("space_2x", "space_no_accel")
|
| 201 |
+
)
|
| 202 |
+
)
|
| 203 |
+
# Returns 222 SPACE samples (115 space_2x + 107 space_no_accel)
|
| 204 |
+
|
| 205 |
+
# Clinical metadata analysis
|
| 206 |
+
import pandas as pd
|
| 207 |
+
|
| 208 |
+
# Select only scalar columns to avoid loading NIfTI columns into RAM
|
| 209 |
+
df = ds.select_columns([
|
| 210 |
+
"subject_id", "session_id", "age_at_stroke",
|
| 211 |
+
"sex", "race", "wab_aq", "wab_days", "wab_type"
|
| 212 |
+
]).to_pandas()
|
| 213 |
+
print(df.describe())
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
## Technical Notes
|
| 217 |
+
|
| 218 |
+
### Multi-Run Modalities
|
| 219 |
+
|
| 220 |
+
Functional and diffusion modalities support multiple runs per session:
|
| 221 |
+
|
| 222 |
+
- Empty list `[]` = no data for this session
|
| 223 |
+
- List with items = all runs for this session, sorted by filename
|
| 224 |
+
|
| 225 |
+
### DWI Gradient Files
|
| 226 |
+
|
| 227 |
+
Each DWI run has aligned gradient information:
|
| 228 |
+
|
| 229 |
+
- `dwi_bvals`: Space-separated b-values (e.g., "0 1000 1000 1000...")
|
| 230 |
+
- `dwi_bvecs`: Three lines of space-separated vectors (x, y, z directions)
|
| 231 |
+
|
| 232 |
+
These are essential for diffusion tensor imaging (DTI) and tractography analysis.
|
| 233 |
+
|
| 234 |
+
### Memory Considerations
|
| 235 |
+
|
| 236 |
+
NIfTI files are loaded on-demand. For large-scale processing:
|
| 237 |
+
|
| 238 |
+
```python
|
| 239 |
+
for session in ds:
|
| 240 |
+
process(session)
|
| 241 |
+
# Data is garbage collected after each iteration
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
### Original BIDS Source
|
| 245 |
+
|
| 246 |
+
This dataset is derived from [OpenNeuro ds004884](https://openneuro.org/datasets/ds004884). The original BIDS structure is preserved in the column naming and organization.
|
| 247 |
+
|
| 248 |
+
## Additional Information
|
| 249 |
+
|
| 250 |
+
### Dataset Curators
|
| 251 |
+
|
| 252 |
+
- **Original Dataset:** Gibson et al. (University of South Carolina)
|
| 253 |
+
- **HuggingFace Conversion:** The-Obstacle-Is-The-Way
|
| 254 |
+
|
| 255 |
+
### Licensing
|
| 256 |
+
|
| 257 |
+
This dataset is released under **CC0 1.0 Universal (Public Domain)**. You can copy, modify, distribute, and perform the work, even for commercial purposes, all without asking permission.
|
| 258 |
+
|
| 259 |
+
## Citation
|
| 260 |
+
|
| 261 |
+
```bibtex
|
| 262 |
+
@article{gibson2024arc,
|
| 263 |
+
title={The Aphasia Recovery Cohort, an open-source chronic stroke repository},
|
| 264 |
+
author={Gibson, Makayla and Newman-Norlund, Roger and Bonilha, Leonardo and Fridriksson, Julius and Hickok, Gregory and Hillis, Argye E and den Ouden, Dirk-Bart and Rorden, Christopher},
|
| 265 |
+
journal={Scientific Data},
|
| 266 |
+
volume={11},
|
| 267 |
+
pages={981},
|
| 268 |
+
year={2024},
|
| 269 |
+
publisher={Nature Publishing Group},
|
| 270 |
+
doi={10.1038/s41597-024-03819-7}
|
| 271 |
+
}
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
## Contributions
|
| 275 |
+
|
| 276 |
+
Thanks to [@The-Obstacle-Is-The-Way](https://github.com/The-Obstacle-Is-The-Way) for converting this dataset to HuggingFace format with native `Nifti()` feature support.
|
| 277 |
+
|
| 278 |
+
## Changelog
|
| 279 |
+
|
| 280 |
+
### v2 (December 2025)
|
| 281 |
+
|
| 282 |
+
- **BREAKING:** `bold` column split into `bold_naming40` and `bold_rest` for task-specific analysis
|
| 283 |
+
- **NEW:** `dwi_bvals` and `dwi_bvecs` columns for diffusion gradient information
|
| 284 |
+
- **NEW:** `race` column from participants.tsv
|
| 285 |
+
- **NEW:** `wab_days` column (days since stroke when WAB administered)
|
| 286 |
+
- **NEW:** `t2w_acquisition` column for T2w sequence type filtering
|
| 287 |
+
|
| 288 |
+
### v1 (December 2025)
|
| 289 |
+
|
| 290 |
+
- Initial release with 13 columns
|