Datasets:

Modalities:
Image
Text
Formats:
text
ArXiv:
Libraries:
Datasets
License:
LandCover.ai / split.py
dragon7's picture
Upload main dataset
b9569fb verified
raw
history blame
1.4 kB
#!/usr/bin/env python3
import glob
import os
import cv2
IMGS_DIR = "./images"
MASKS_DIR = "./masks"
OUTPUT_DIR = "./output"
TARGET_SIZE = 512
img_paths = glob.glob(os.path.join(IMGS_DIR, "*.tif"))
mask_paths = glob.glob(os.path.join(MASKS_DIR, "*.tif"))
img_paths.sort()
mask_paths.sort()
os.makedirs(OUTPUT_DIR)
for i, (img_path, mask_path) in enumerate(zip(img_paths, mask_paths)):
img_filename = os.path.splitext(os.path.basename(img_path))[0]
mask_filename = os.path.splitext(os.path.basename(mask_path))[0]
img = cv2.imread(img_path)
mask = cv2.imread(mask_path)
assert img_filename == mask_filename and img.shape[:2] == mask.shape[:2]
k = 0
for y in range(0, img.shape[0], TARGET_SIZE):
for x in range(0, img.shape[1], TARGET_SIZE):
img_tile = img[y:y + TARGET_SIZE, x:x + TARGET_SIZE]
mask_tile = mask[y:y + TARGET_SIZE, x:x + TARGET_SIZE]
if img_tile.shape[0] == TARGET_SIZE and img_tile.shape[1] == TARGET_SIZE:
out_img_path = os.path.join(OUTPUT_DIR, "{}_{}.jpg".format(img_filename, k))
cv2.imwrite(out_img_path, img_tile)
out_mask_path = os.path.join(OUTPUT_DIR, "{}_{}_m.png".format(mask_filename, k))
cv2.imwrite(out_mask_path, mask_tile)
k += 1
print("Processed {} {}/{}".format(img_filename, i + 1, len(img_paths)))