Add unbalanced config. Fix memory leak.
Browse files- AudioSet.py +44 -19
- README.md +127 -24
AudioSet.py
CHANGED
|
@@ -51,6 +51,10 @@ _LICENSE = "cc-by-4.0"
|
|
| 51 |
|
| 52 |
_URL_PREFIX = "https://huggingface.co/datasets/agkphysics/AudioSet/resolve/main"
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def _iter_tar(path):
|
| 56 |
"""Iterate through the tar archive, but without skipping some files, which the HF
|
|
@@ -68,6 +72,20 @@ def _iter_tar(path):
|
|
| 68 |
class AudioSetDataset(datasets.GeneratorBasedBuilder):
|
| 69 |
VERSION = datasets.Version("1.0.0")
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def _info(self) -> datasets.DatasetInfo:
|
| 72 |
return datasets.DatasetInfo(
|
| 73 |
description=_DESCRIPTION,
|
|
@@ -92,14 +110,24 @@ class AudioSetDataset(datasets.GeneratorBasedBuilder):
|
|
| 92 |
prefix = prefix + "/data"
|
| 93 |
|
| 94 |
_LABEL_URLS = {
|
| 95 |
-
"bal_train":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"eval": f"{prefix}/eval_segments.csv",
|
| 97 |
"ontology": f"{prefix}/ontology.json",
|
| 98 |
}
|
| 99 |
-
|
| 100 |
_DATA_URLS = {
|
| 101 |
-
"bal_train":
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
}
|
| 104 |
|
| 105 |
tar_files = dl_manager.download(_DATA_URLS)
|
|
@@ -129,30 +157,27 @@ class AudioSetDataset(datasets.GeneratorBasedBuilder):
|
|
| 129 |
]
|
| 130 |
|
| 131 |
def _generate_examples(self, labels, ontology, audio_files):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
labels_df = pd.read_csv(
|
| 133 |
labels,
|
| 134 |
skiprows=3,
|
| 135 |
header=None,
|
| 136 |
skipinitialspace=True,
|
| 137 |
names=["vid_id", "start", "end", "labels"],
|
|
|
|
| 138 |
)
|
| 139 |
-
with open(ontology) as fid:
|
| 140 |
-
ontology_data = json.load(fid)
|
| 141 |
-
id_to_name = {x["id"]: x["name"] for x in ontology_data}
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
label_ids =
|
| 146 |
human_labels = [id_to_name[x] for x in label_ids]
|
| 147 |
-
|
| 148 |
-
"video_id":
|
| 149 |
"labels": label_ids,
|
| 150 |
"human_labels": human_labels,
|
|
|
|
| 151 |
}
|
| 152 |
-
|
| 153 |
-
for path, fid in audio_files:
|
| 154 |
-
vid_id = os.path.splitext(os.path.basename(path))[0]
|
| 155 |
-
if vid_id in examples:
|
| 156 |
-
audio = {"path": path, "bytes": fid.read()}
|
| 157 |
-
examples[vid_id]["audio"] = audio
|
| 158 |
-
yield vid_id, examples[vid_id]
|
|
|
|
| 51 |
|
| 52 |
_URL_PREFIX = "https://huggingface.co/datasets/agkphysics/AudioSet/resolve/main"
|
| 53 |
|
| 54 |
+
_N_BAL_TRAIN_TARS = 10
|
| 55 |
+
_N_UNBAL_TRAIN_TARS = 870
|
| 56 |
+
_N_EVAL_TARS = 9
|
| 57 |
+
|
| 58 |
|
| 59 |
def _iter_tar(path):
|
| 60 |
"""Iterate through the tar archive, but without skipping some files, which the HF
|
|
|
|
| 72 |
class AudioSetDataset(datasets.GeneratorBasedBuilder):
|
| 73 |
VERSION = datasets.Version("1.0.0")
|
| 74 |
|
| 75 |
+
BUILDER_CONFIGS = [
|
| 76 |
+
datasets.BuilderConfig(
|
| 77 |
+
name="balanced",
|
| 78 |
+
version=VERSION,
|
| 79 |
+
description="Balanced training and balanced evaluation set.",
|
| 80 |
+
),
|
| 81 |
+
datasets.BuilderConfig(
|
| 82 |
+
name="unbalanced",
|
| 83 |
+
version=VERSION,
|
| 84 |
+
description="Full unbalanced training set and balanced evaluation set.",
|
| 85 |
+
),
|
| 86 |
+
]
|
| 87 |
+
DEFAULT_CONFIG_NAME = "balanced"
|
| 88 |
+
|
| 89 |
def _info(self) -> datasets.DatasetInfo:
|
| 90 |
return datasets.DatasetInfo(
|
| 91 |
description=_DESCRIPTION,
|
|
|
|
| 110 |
prefix = prefix + "/data"
|
| 111 |
|
| 112 |
_LABEL_URLS = {
|
| 113 |
+
"bal_train": (
|
| 114 |
+
f"{prefix}/balanced_train_segments.csv"
|
| 115 |
+
if self.config.name == "balanced"
|
| 116 |
+
else f"{prefix}/unbalanced_train_segments.csv"
|
| 117 |
+
),
|
| 118 |
"eval": f"{prefix}/eval_segments.csv",
|
| 119 |
"ontology": f"{prefix}/ontology.json",
|
| 120 |
}
|
|
|
|
| 121 |
_DATA_URLS = {
|
| 122 |
+
"bal_train": (
|
| 123 |
+
[f"{prefix}/bal_train0{i}.tar" for i in range(_N_BAL_TRAIN_TARS)]
|
| 124 |
+
if self.config.name == "balanced"
|
| 125 |
+
else [
|
| 126 |
+
f"{prefix}/unbal_train{i:03d}.tar"
|
| 127 |
+
for i in range(_N_UNBAL_TRAIN_TARS)
|
| 128 |
+
]
|
| 129 |
+
),
|
| 130 |
+
"eval": [f"{prefix}/eval0{i}.tar" for i in range(_N_EVAL_TARS)],
|
| 131 |
}
|
| 132 |
|
| 133 |
tar_files = dl_manager.download(_DATA_URLS)
|
|
|
|
| 157 |
]
|
| 158 |
|
| 159 |
def _generate_examples(self, labels, ontology, audio_files):
|
| 160 |
+
with open(ontology) as fid:
|
| 161 |
+
ontology_data = json.load(fid)
|
| 162 |
+
id_to_name = {x["id"]: x["name"] for x in ontology_data}
|
| 163 |
+
|
| 164 |
labels_df = pd.read_csv(
|
| 165 |
labels,
|
| 166 |
skiprows=3,
|
| 167 |
header=None,
|
| 168 |
skipinitialspace=True,
|
| 169 |
names=["vid_id", "start", "end", "labels"],
|
| 170 |
+
index_col="vid_id",
|
| 171 |
)
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
for path, fid in audio_files:
|
| 174 |
+
vid_id = os.path.splitext(os.path.basename(path))[0]
|
| 175 |
+
label_ids = labels_df.loc[vid_id, "labels"].split(",")
|
| 176 |
human_labels = [id_to_name[x] for x in label_ids]
|
| 177 |
+
example = {
|
| 178 |
+
"video_id": vid_id,
|
| 179 |
"labels": label_ids,
|
| 180 |
"human_labels": human_labels,
|
| 181 |
+
"audio": {"path": path, "bytes": fid.read()},
|
| 182 |
}
|
| 183 |
+
yield vid_id, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,13 +1,23 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
task_categories:
|
| 4 |
- audio-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
tags:
|
| 6 |
- audio
|
| 7 |
-
size_categories:
|
| 8 |
-
- 10K<n<100K
|
| 9 |
-
paperswithcode_id: audioset
|
| 10 |
dataset_info:
|
|
|
|
| 11 |
features:
|
| 12 |
- name: video_id
|
| 13 |
dtype: string
|
|
@@ -26,29 +36,52 @@ dataset_info:
|
|
| 26 |
num_examples: 17142
|
| 27 |
download_size: 49805654900
|
| 28 |
dataset_size: 49779893265
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
---
|
| 30 |
|
| 31 |
# Dataset Card for AudioSet
|
| 32 |
|
| 33 |
-
## Dataset
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
https://
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
```python
|
| 53 |
{
|
| 54 |
'video_id': '--PJHxphWEs',
|
|
@@ -63,8 +96,78 @@ Example instance from the `train` subset:
|
|
| 63 |
}
|
| 64 |
```
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
## Citation
|
| 70 |
```bibtex
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
license: cc-by-4.0
|
| 5 |
+
size_categories:
|
| 6 |
+
- 10K<n<100K
|
| 7 |
+
- 1M<n<10M
|
| 8 |
+
source_datasets:
|
| 9 |
+
- original
|
| 10 |
task_categories:
|
| 11 |
- audio-classification
|
| 12 |
+
paperswithcode_id: audioset
|
| 13 |
+
pretty_name: AudioSet
|
| 14 |
+
config_names:
|
| 15 |
+
- balanced
|
| 16 |
+
- unbalanced
|
| 17 |
tags:
|
| 18 |
- audio
|
|
|
|
|
|
|
|
|
|
| 19 |
dataset_info:
|
| 20 |
+
- config_name: balanced
|
| 21 |
features:
|
| 22 |
- name: video_id
|
| 23 |
dtype: string
|
|
|
|
| 36 |
num_examples: 17142
|
| 37 |
download_size: 49805654900
|
| 38 |
dataset_size: 49779893265
|
| 39 |
+
- config_name: unbalanced
|
| 40 |
+
features:
|
| 41 |
+
- name: video_id
|
| 42 |
+
dtype: string
|
| 43 |
+
- name: audio
|
| 44 |
+
dtype: audio
|
| 45 |
+
- name: labels
|
| 46 |
+
sequence: string
|
| 47 |
+
- name: human_labels
|
| 48 |
+
sequence: string
|
| 49 |
+
splits:
|
| 50 |
+
- name: train
|
| 51 |
+
num_bytes: 2408656417541
|
| 52 |
+
num_examples: 1738788
|
| 53 |
+
- name: test
|
| 54 |
+
num_bytes: 23763682278
|
| 55 |
+
num_examples: 17142
|
| 56 |
+
download_size: 2433673104977
|
| 57 |
+
dataset_size: 2432420099819
|
| 58 |
---
|
| 59 |
|
| 60 |
# Dataset Card for AudioSet
|
| 61 |
|
| 62 |
+
## Dataset Description
|
| 63 |
+
- **Homepage**: https://research.google.com/audioset/index.html
|
| 64 |
+
- **Paper**: https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/45857.pdf
|
| 65 |
+
- **Leaderboard**: https://paperswithcode.com/sota/audio-classification-on-audioset
|
| 66 |
+
|
| 67 |
+
### Dataset Summary
|
| 68 |
+
[AudioSet](https://research.google.com/audioset/dataset/index.html) is a
|
| 69 |
+
dataset of 10-second clips from YouTube, annotated into one or more
|
| 70 |
+
sound categories, following the AudioSet ontology.
|
| 71 |
+
|
| 72 |
+
### Supported Tasks and Leaderboards
|
| 73 |
+
- `audio-classification`: Classify audio clips into categories. The
|
| 74 |
+
leaderboard is available
|
| 75 |
+
[here](https://paperswithcode.com/sota/audio-classification-on-audioset)
|
| 76 |
+
|
| 77 |
+
### Languages
|
| 78 |
+
The class labels in the dataset are in English.
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
## Dataset Structure
|
| 82 |
+
|
| 83 |
+
### Data Instances
|
| 84 |
+
Example instance from the dataset:
|
| 85 |
```python
|
| 86 |
{
|
| 87 |
'video_id': '--PJHxphWEs',
|
|
|
|
| 96 |
}
|
| 97 |
```
|
| 98 |
|
| 99 |
+
### Data Fields
|
| 100 |
+
Instances have the following fields:
|
| 101 |
+
- `video_id`: a `string` feature containing the original YouTube ID.
|
| 102 |
+
- `audio`: an `Audio` feature containing the audio data and sample rate.
|
| 103 |
+
- `labels`: a sequence of `string` features containing the labels
|
| 104 |
+
associated with the audio clip.
|
| 105 |
+
- `human_labels`: a sequence of `string` features containing the
|
| 106 |
+
human-readable forms of the same labels as in `labels`.
|
| 107 |
+
|
| 108 |
+
### Data Splits
|
| 109 |
+
The distribuion of audio clips is as follows:
|
| 110 |
+
|
| 111 |
+
#### `balanced` configuration
|
| 112 |
+
| |train|test |
|
| 113 |
+
|-----------|----:|----:|
|
| 114 |
+
|# instances|18685|17142|
|
| 115 |
+
|
| 116 |
+
#### `unbalanced` configuration
|
| 117 |
+
| |train |test |
|
| 118 |
+
|-----------|------:|----:|
|
| 119 |
+
|# instances|1738788|17142|
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
## Dataset Creation
|
| 123 |
+
|
| 124 |
+
### Curation Rationale
|
| 125 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 126 |
+
|
| 127 |
+
### Source Data
|
| 128 |
+
|
| 129 |
+
#### Initial Data Collection and Normalization
|
| 130 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 131 |
+
|
| 132 |
+
#### Who are the source language producers?
|
| 133 |
+
The labels are from the AudioSet ontology. Audio clips are from YouTube.
|
| 134 |
+
|
| 135 |
+
### Annotations
|
| 136 |
+
|
| 137 |
+
#### Annotation process
|
| 138 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 139 |
+
|
| 140 |
+
#### Who are the annotators?
|
| 141 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 142 |
+
|
| 143 |
+
### Personal and Sensitive Information
|
| 144 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 145 |
+
|
| 146 |
+
## Considerations for Using the Data
|
| 147 |
+
|
| 148 |
+
### Social Impact of Dataset
|
| 149 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 150 |
+
|
| 151 |
+
### Discussion of Biases
|
| 152 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 153 |
+
|
| 154 |
+
### Other Known Limitations
|
| 155 |
+
1. The YouTube videos in this copy of AudioSet were downloaded in March
|
| 156 |
+
2023, so not all of the original audios are available. The number of
|
| 157 |
+
clips able to be downloaded is as follows:
|
| 158 |
+
- Balanced train: 18685 audio clips out of 22160 originally.
|
| 159 |
+
- Unbalanced train: 1738788 clips out of 2041789 originally.
|
| 160 |
+
- Evaluation: 17142 audio clips out of 20371 originally.
|
| 161 |
+
2. Most audio is sampled at 48 kHz 24 bit, but about 10% is sampled at
|
| 162 |
+
44.1 kHz 24 bit. Audio files are stored in the FLAC format.
|
| 163 |
+
|
| 164 |
+
## Additional Information
|
| 165 |
+
|
| 166 |
+
### Dataset Curators
|
| 167 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 168 |
+
|
| 169 |
+
### Licensing Information
|
| 170 |
+
The AudioSet data is licensed under CC-BY-4.0
|
| 171 |
|
| 172 |
## Citation
|
| 173 |
```bibtex
|