Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
image1
image
image2
image
8082198079100104124
8132169006700108300
7843099804900106580
8532577790500107919
8508387658300102975
8016357325300106086
8468463616800107695
7835644911600108720
8522056047900101175
8084574977600102914
8153663389100102234
8506286988800107099
7834120009900103018
7840484330900100638
7833456185700101337
7841949244600107349
8317714510800106664
7832752310400108771
8460304691900105680
7882195350200101307
8472035905100107465
8470461705600103587
8506823161800109063
7893120118200104575
8517132106500101244
7832944277300104210
8461233310500102709
8201110923400105961
8132333564700109858
8256713326600109152
8454334702600105510
7836115429400108012
7832939331500109618
7832583375400107885
8497123377400103942
8367916141600103707
8462597168700102035
7851646000700103810
7841444709100107277
7852221460900104455
8280230452200109313
8281870174100104695
7859016187800104833
7837564344000108915
8467849747100106349
8481017587200104896
8157859108700102149
7865829654500108945
7839363273400101834
8383955833700102279
7851321462800108835
7837877036900107223
7837550345000105856
7854843399000100446
8126926884700105317
7975918105600103136
7834016151000100233
7835981433600100647
7850496655500100233
7833293488800101185
7833115749600105848
8184530854800105306
8453250486500107537
8081116115300105409
7837299597400100056
7960247996700102644
7840243544700106328
7836667997600100310
8461813193300107165
7839195421800103763
8455095212000106836
8489701670500102567
8497575411500104852
8212938248000107438
8304605805000104451
7955128805800106574
7833817810200104960
8468989693100109037
7839781642000107536
8277085457400106621
7833414844800109442
8506572969300108084
8471187675800105341
8324232319000102352
8511374247800106556
7832968351800101363
7841325722000108910
7833433016700104791
8453676684300105964
8126734205500104139
7832999141600109667
8390980788500100754
7832987259500102845
7939710088600102487
7841977076100101575
7987887182800100017
8110877415400104340
8092478634100109257
8023378952900100381
7850842384500102674
End of preview. Expand in Data Studio

Appliance Knobs

Overview

Appliance Knobs is a high-resolution dataset curated by Codatta, designed to support fine-grained object understanding, 3D shape estimation, and state recognition tasks.

This collection focuses on electrical appliance knobs and rotary controls. Its defining feature is the paired image set structure: every data entry captures the same specific knob from two distinct and correlated angles:

  • Front View: A direct shot showing indicators and markings.
  • Side View: A profile shot showing depth, height, and texture.

The dataset is filtered to ensure high fidelity, making it suitable for industrial design analysis, robotics, and generative AI applications requiring detailed reference material.

Dataset Contents

Each entry in the dataset consists of a unique identifier and two high-quality images.

Data Fields

  • id (string): Unique identifier for the knob/appliance sample.
  • image1 (image): Front View. A direct frontal shot of the knob, clearly showing the face, markings, and position indicators.
  • image2 (image): Side View. A profile or oblique angle shot of the same knob to showcase its height, depth, material texture, and grip patterns.

Quality Standards

  • Clear & Unoccluded: All images have been manually verified to ensure the knob is the primary focus, free from obstruction by hands, wires, or other objects.
  • Lighting: Consistent lighting is used to highlight the texture and markings of the controls.

Key Statistics

  • Total Examples: 408 paired samples.
  • Dataset Size: ~1.74 GB (indicating high-resolution imagery).
  • Views per Sample: 2 (Front and Side).
  • Language: English (en).

Usage

This dataset is optimized for tasks that benefit from multi-view correlation and high-resolution texture details.

Supported Tasks:

  • Multi-View Object Recognition: Identifying objects using correlated information from different viewpoints.
  • 3D Shape Reconstruction: Inferring the 3D structure and depth of knobs based on the front and side profiles.
  • Knob State/Angle Estimation: Training models to read the precise setting or angle of a dial.
  • Generative AI Training: Serving as high-quality reference data for training LoRAs or ControlNets for specific industrial components.

Python Usage Example: You can load and visualize the paired images side-by-side using the following code:

from datasets import load_dataset
import matplotlib.pyplot as plt

# Load the dataset
ds = load_dataset("Codatta/appliance-knobs-dual-view", split="train")

# Get a sample
sample = ds[0]

# Visualize Front vs Side view
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].imshow(sample['image1'])
axes[0].set_title("Front View (Image 1)")
axes[0].axis('off')

axes[1].imshow(sample['image2'])
axes[1].set_title("Side View (Image 2)")
axes[1].axis('off')

plt.show()

License and Open-Source Details

  • License: This dataset is released under the OpenRAIL license.
Downloads last month
22