Update test3.py
Browse files
test3.py
CHANGED
|
@@ -12,14 +12,13 @@ import shutil
|
|
| 12 |
import srt
|
| 13 |
from tqdm import tqdm
|
| 14 |
import concurrent.futures
|
| 15 |
-
import gc
|
| 16 |
|
| 17 |
mtypes = {"cpu": "int8", "cuda": "float16"}
|
| 18 |
|
| 19 |
def setup_logging():
|
| 20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 21 |
|
| 22 |
-
def process_audio_file(audio_file, args
|
| 23 |
logging.info(f"Processing file: {audio_file}")
|
| 24 |
|
| 25 |
if args.stemming:
|
|
@@ -49,7 +48,8 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 49 |
vocal_target,
|
| 50 |
args.language,
|
| 51 |
args.batch_size,
|
| 52 |
-
|
|
|
|
| 53 |
args.suppress_numerals,
|
| 54 |
args.device,
|
| 55 |
)
|
|
@@ -58,13 +58,17 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 58 |
whisper_results, language = transcribe(
|
| 59 |
vocal_target,
|
| 60 |
args.language,
|
| 61 |
-
|
|
|
|
| 62 |
args.suppress_numerals,
|
| 63 |
args.device,
|
| 64 |
)
|
| 65 |
|
| 66 |
logging.info("Aligning transcription...")
|
| 67 |
if language in wav2vec2_langs:
|
|
|
|
|
|
|
|
|
|
| 68 |
result_aligned = whisperx.align(
|
| 69 |
whisper_results, alignment_model, metadata, vocal_target, args.device
|
| 70 |
)
|
|
@@ -73,6 +77,8 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 73 |
initial_timestamp=whisper_results[0].get("start"),
|
| 74 |
final_timestamp=whisper_results[-1].get("end"),
|
| 75 |
)
|
|
|
|
|
|
|
| 76 |
else:
|
| 77 |
word_timestamps = []
|
| 78 |
for segment in whisper_results:
|
|
@@ -85,8 +91,7 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 85 |
ROOT = os.getcwd()
|
| 86 |
temp_path = os.path.join(ROOT, "temp_outputs")
|
| 87 |
os.makedirs(temp_path, exist_ok=True)
|
| 88 |
-
|
| 89 |
-
sound.export(mono_file, format="wav")
|
| 90 |
|
| 91 |
# Initialize NeMo MSDD diarization model
|
| 92 |
logging.info("Performing diarization...")
|
|
@@ -120,6 +125,9 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 120 |
audio_dir = os.path.join(autodiarization_dir, base_name)
|
| 121 |
os.makedirs(audio_dir, exist_ok=True)
|
| 122 |
|
|
|
|
|
|
|
|
|
|
| 123 |
# Generate the SRT file
|
| 124 |
srt_file = f"{os.path.splitext(audio_file)[0]}.srt"
|
| 125 |
with open(srt_file, "w", encoding="utf-8") as f:
|
|
@@ -134,7 +142,7 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 134 |
|
| 135 |
# Process each segment in the SRT data
|
| 136 |
logging.info("Processing audio segments...")
|
| 137 |
-
for segment in tqdm(srt_segments, desc="Processing segments"
|
| 138 |
start_time = segment.start.total_seconds() * 1000
|
| 139 |
end_time = segment.end.total_seconds() * 1000
|
| 140 |
speaker_name, transcript = segment.content.split(": ", 1)
|
|
@@ -148,33 +156,21 @@ def process_audio_file(audio_file, args, whisper_model, alignment_model, metadat
|
|
| 148 |
os.makedirs(os.path.dirname(segment_path), exist_ok=True)
|
| 149 |
segment_audio.export(segment_path, format="wav")
|
| 150 |
|
| 151 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
|
| 153 |
-
with open(os.path.join(speaker_dir, "metadata.csv"), "
|
| 154 |
-
f.write(
|
| 155 |
|
| 156 |
# Clean up temporary files
|
| 157 |
cleanup(temp_path)
|
| 158 |
logging.info(f"Finished processing {audio_file}")
|
| 159 |
-
gc.collect()
|
| 160 |
-
|
| 161 |
-
def process_batch(audio_files, args):
|
| 162 |
-
# Load models once for the batch
|
| 163 |
-
whisper_model = WhisperModel(args.model_name, device=args.device, compute_type=mtypes[args.device])
|
| 164 |
-
|
| 165 |
-
if args.language in wav2vec2_langs:
|
| 166 |
-
alignment_model, metadata = whisperx.load_align_model(
|
| 167 |
-
language_code=args.language, device=args.device
|
| 168 |
-
)
|
| 169 |
-
else:
|
| 170 |
-
alignment_model, metadata = None, None
|
| 171 |
-
|
| 172 |
-
for audio_file in tqdm(audio_files, desc="Processing files in batch"):
|
| 173 |
-
process_audio_file(audio_file, args, whisper_model, alignment_model, metadata)
|
| 174 |
-
|
| 175 |
-
del whisper_model, alignment_model
|
| 176 |
-
torch.cuda.empty_cache()
|
| 177 |
-
gc.collect()
|
| 178 |
|
| 179 |
def main():
|
| 180 |
setup_logging()
|
|
@@ -223,24 +219,15 @@ def main():
|
|
| 223 |
default="cuda" if torch.cuda.is_available() else "cpu",
|
| 224 |
help="if you have a GPU use 'cuda', otherwise 'cpu'",
|
| 225 |
)
|
| 226 |
-
parser.add_argument(
|
| 227 |
-
"--batch-files",
|
| 228 |
-
type=int,
|
| 229 |
-
default=10,
|
| 230 |
-
help="Number of files to process in a single batch",
|
| 231 |
-
)
|
| 232 |
args = parser.parse_args()
|
| 233 |
|
| 234 |
if os.path.isdir(args.audio):
|
| 235 |
audio_files = glob.glob(os.path.join(args.audio, "*.wav")) + glob.glob(os.path.join(args.audio, "*.mp3"))
|
| 236 |
logging.info(f"Found {len(audio_files)} audio files in the directory.")
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
for i in range(0, len(audio_files), args.batch_files):
|
| 240 |
-
batch = audio_files[i:i+args.batch_files]
|
| 241 |
-
process_batch(batch, args)
|
| 242 |
else:
|
| 243 |
-
process_audio_file(args.audio, args
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
main()
|
|
|
|
| 12 |
import srt
|
| 13 |
from tqdm import tqdm
|
| 14 |
import concurrent.futures
|
|
|
|
| 15 |
|
| 16 |
mtypes = {"cpu": "int8", "cuda": "float16"}
|
| 17 |
|
| 18 |
def setup_logging():
|
| 19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 20 |
|
| 21 |
+
def process_audio_file(audio_file, args):
|
| 22 |
logging.info(f"Processing file: {audio_file}")
|
| 23 |
|
| 24 |
if args.stemming:
|
|
|
|
| 48 |
vocal_target,
|
| 49 |
args.language,
|
| 50 |
args.batch_size,
|
| 51 |
+
args.model_name,
|
| 52 |
+
mtypes[args.device],
|
| 53 |
args.suppress_numerals,
|
| 54 |
args.device,
|
| 55 |
)
|
|
|
|
| 58 |
whisper_results, language = transcribe(
|
| 59 |
vocal_target,
|
| 60 |
args.language,
|
| 61 |
+
args.model_name,
|
| 62 |
+
mtypes[args.device],
|
| 63 |
args.suppress_numerals,
|
| 64 |
args.device,
|
| 65 |
)
|
| 66 |
|
| 67 |
logging.info("Aligning transcription...")
|
| 68 |
if language in wav2vec2_langs:
|
| 69 |
+
alignment_model, metadata = whisperx.load_align_model(
|
| 70 |
+
language_code=language, device=args.device
|
| 71 |
+
)
|
| 72 |
result_aligned = whisperx.align(
|
| 73 |
whisper_results, alignment_model, metadata, vocal_target, args.device
|
| 74 |
)
|
|
|
|
| 77 |
initial_timestamp=whisper_results[0].get("start"),
|
| 78 |
final_timestamp=whisper_results[-1].get("end"),
|
| 79 |
)
|
| 80 |
+
del alignment_model
|
| 81 |
+
torch.cuda.empty_cache()
|
| 82 |
else:
|
| 83 |
word_timestamps = []
|
| 84 |
for segment in whisper_results:
|
|
|
|
| 91 |
ROOT = os.getcwd()
|
| 92 |
temp_path = os.path.join(ROOT, "temp_outputs")
|
| 93 |
os.makedirs(temp_path, exist_ok=True)
|
| 94 |
+
sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")
|
|
|
|
| 95 |
|
| 96 |
# Initialize NeMo MSDD diarization model
|
| 97 |
logging.info("Performing diarization...")
|
|
|
|
| 125 |
audio_dir = os.path.join(autodiarization_dir, base_name)
|
| 126 |
os.makedirs(audio_dir, exist_ok=True)
|
| 127 |
|
| 128 |
+
# Create a dictionary to store speaker-specific metadata
|
| 129 |
+
speaker_metadata = {}
|
| 130 |
+
|
| 131 |
# Generate the SRT file
|
| 132 |
srt_file = f"{os.path.splitext(audio_file)[0]}.srt"
|
| 133 |
with open(srt_file, "w", encoding="utf-8") as f:
|
|
|
|
| 142 |
|
| 143 |
# Process each segment in the SRT data
|
| 144 |
logging.info("Processing audio segments...")
|
| 145 |
+
for segment in tqdm(srt_segments, desc="Processing segments"):
|
| 146 |
start_time = segment.start.total_seconds() * 1000
|
| 147 |
end_time = segment.end.total_seconds() * 1000
|
| 148 |
speaker_name, transcript = segment.content.split(": ", 1)
|
|
|
|
| 156 |
os.makedirs(os.path.dirname(segment_path), exist_ok=True)
|
| 157 |
segment_audio.export(segment_path, format="wav")
|
| 158 |
|
| 159 |
+
# Store the metadata for each speaker
|
| 160 |
+
if speaker_name not in speaker_metadata:
|
| 161 |
+
speaker_metadata[speaker_name] = []
|
| 162 |
+
speaker_metadata[speaker_name].append(f"speaker_{speaker_id}_{segment.index:03d}|{speaker_name}|{transcript}")
|
| 163 |
+
|
| 164 |
+
# Write the metadata.csv file for each speaker
|
| 165 |
+
for speaker_name, metadata in speaker_metadata.items():
|
| 166 |
+
speaker_id = int(speaker_name.split(" ")[-1])
|
| 167 |
speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
|
| 168 |
+
with open(os.path.join(speaker_dir, "metadata.csv"), "w", encoding="utf-8") as f:
|
| 169 |
+
f.write("\n".join(metadata))
|
| 170 |
|
| 171 |
# Clean up temporary files
|
| 172 |
cleanup(temp_path)
|
| 173 |
logging.info(f"Finished processing {audio_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def main():
|
| 176 |
setup_logging()
|
|
|
|
| 219 |
default="cuda" if torch.cuda.is_available() else "cpu",
|
| 220 |
help="if you have a GPU use 'cuda', otherwise 'cpu'",
|
| 221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
args = parser.parse_args()
|
| 223 |
|
| 224 |
if os.path.isdir(args.audio):
|
| 225 |
audio_files = glob.glob(os.path.join(args.audio, "*.wav")) + glob.glob(os.path.join(args.audio, "*.mp3"))
|
| 226 |
logging.info(f"Found {len(audio_files)} audio files in the directory.")
|
| 227 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 228 |
+
list(tqdm(executor.map(lambda f: process_audio_file(f, args), audio_files), total=len(audio_files), desc="Processing files"))
|
|
|
|
|
|
|
|
|
|
| 229 |
else:
|
| 230 |
+
process_audio_file(args.audio, args)
|
| 231 |
|
| 232 |
if __name__ == "__main__":
|
| 233 |
main()
|