cpatonn commited on
Commit
8b63459
·
verified ·
1 Parent(s): b47f488

Delete files .ipynb* with huggingface_hub

Browse files
.ipynb_checkpoints/configuration_minimax_m2-checkpoint.py DELETED
@@ -1,200 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_minimax_m2.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- # coding=utf-8
8
- # Copyright 2025 the HuggingFace Team. All rights reserved.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
-
23
- from transformers.configuration_utils import PretrainedConfig
24
-
25
-
26
- class MiniMaxM2Config(PretrainedConfig):
27
- r"""
28
- This is the configuration class to store the configuration of a [`MiniMaxM2Model`]. It is used to instantiate an
29
- MiniMaxM2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
- with the defaults will yield a similar configuration to that of the MiniMaxM2-7B-v0.1 or MiniMaxM2-7B-Instruct-v0.1.
31
-
32
- [minimax_m2ai/MiniMaxM2-8x7B](https://huggingface.co/minimax_m2ai/MiniMaxM2-8x7B)
33
- [minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1](https://huggingface.co/minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1)
34
-
35
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
- documentation from [`PretrainedConfig`] for more information.
37
-
38
-
39
- Args:
40
- vocab_size (`int`, *optional*, defaults to 32000):
41
- Vocabulary size of the MiniMaxM2 model. Defines the number of different tokens that can be represented by the
42
- `inputs_ids` passed when calling [`MiniMaxM2Model`]
43
- hidden_size (`int`, *optional*, defaults to 4096):
44
- Dimension of the hidden representations.
45
- intermediate_size (`int`, *optional*, defaults to 14336):
46
- Dimension of the MLP representations.
47
- num_hidden_layers (`int`, *optional*, defaults to 32):
48
- Number of hidden layers in the Transformer encoder.
49
- num_attention_heads (`int`, *optional*, defaults to 32):
50
- Number of attention heads for each attention layer in the Transformer encoder.
51
- num_key_value_heads (`int`, *optional*, defaults to 8):
52
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
- by meanpooling all the original heads within that group. For more details, check out [this
57
- paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
58
- head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
59
- The attention head dimension.
60
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
- The non-linear activation function (function or string) in the decoder.
62
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
63
- The maximum sequence length that this model might ever be used with. MiniMaxM2's sliding window attention
64
- allows sequence of up to 4096*32 tokens.
65
- initializer_range (`float`, *optional*, defaults to 0.02):
66
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
68
- The epsilon used by the rms normalization layers.
69
- use_cache (`bool`, *optional*, defaults to `True`):
70
- Whether or not the model should return the last key/values attentions (not used by all models). Only
71
- relevant if `config.is_decoder=True`.
72
- pad_token_id (`int`, *optional*):
73
- The id of the padding token.
74
- bos_token_id (`int`, *optional*, defaults to 1):
75
- The id of the "beginning-of-sequence" token.
76
- eos_token_id (`int`, *optional*, defaults to 2):
77
- The id of the "end-of-sequence" token.
78
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
- Whether the model's input and output word embeddings should be tied.
80
- rope_theta (`float`, *optional*, defaults to 1000000.0):
81
- The base period of the RoPE embeddings.
82
- sliding_window (`int`, *optional*):
83
- Sliding window attention window size. If not specified, will default to `4096`.
84
- attention_dropout (`float`, *optional*, defaults to 0.0):
85
- The dropout ratio for the attention probabilities.
86
- num_experts_per_tok (`int`, *optional*, defaults to 2):
87
- The number of experts to route per-token, can be also interpreted as the `top-k` routing
88
- parameter
89
- num_local_experts (`int`, *optional*, defaults to 8):
90
- Number of experts per Sparse MLP layer.
91
- output_router_logits (`bool`, *optional*, defaults to `False`):
92
- Whether or not the router logits should be returned by the model. Enabling this will also
93
- allow the model to output the auxiliary loss. See [here]() for more details
94
- router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
95
- The aux loss factor for the total loss.
96
- router_jitter_noise (`float`, *optional*, defaults to 0.0):
97
- Amount of noise to add to the router.
98
-
99
- ```python
100
- >>> from transformers import MiniMaxM2Model, MiniMaxM2Config
101
-
102
- >>> # Initializing a MiniMaxM2 7B style configuration
103
- >>> configuration = MiniMaxM2Config()
104
-
105
- >>> # Initializing a model from the MiniMaxM2 7B style configuration
106
- >>> model = MiniMaxM2Model(configuration)
107
-
108
- >>> # Accessing the model configuration
109
- >>> configuration = model.config
110
- ```"""
111
-
112
- model_type = "minimax_m2"
113
- keys_to_ignore_at_inference = ["past_key_values"]
114
- base_model_tp_plan = {
115
- "layers.*.self_attn.q_proj": "colwise",
116
- "layers.*.self_attn.k_proj": "colwise",
117
- "layers.*.self_attn.v_proj": "colwise",
118
- "layers.*.self_attn.o_proj": "rowwise",
119
- "layers.*.block_sparse_moe.gate": "colwise_rep", # we need to replicate here to correctly route experts
120
- "layers.*.block_sparse_moe.experts.*.w1": "colwise",
121
- "layers.*.block_sparse_moe.experts.*.w2": "rowwise",
122
- "layers.*.block_sparse_moe.experts.*.w3": "colwise",
123
- }
124
- base_model_pp_plan = {
125
- "embed_tokens": (["input_ids"], ["inputs_embeds"]),
126
- "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
127
- "norm": (["hidden_states"], ["hidden_states"]),
128
- }
129
-
130
- def __init__(
131
- self,
132
- vocab_size=32000,
133
- hidden_size=4096,
134
- intermediate_size=14336,
135
- num_hidden_layers=32,
136
- num_attention_heads=32,
137
- num_key_value_heads=8,
138
- head_dim=None,
139
- hidden_act="silu",
140
- max_position_embeddings=4096 * 32,
141
- initializer_range=0.02,
142
- rms_norm_eps=1e-5,
143
- use_cache=True,
144
- pad_token_id=None,
145
- bos_token_id=1,
146
- eos_token_id=2,
147
- tie_word_embeddings=False,
148
- rope_theta=1e6,
149
- sliding_window=None,
150
- attention_dropout=0.0,
151
- num_experts_per_tok=2,
152
- num_local_experts=8,
153
- output_router_logits=False,
154
- router_aux_loss_coef=0.001,
155
- router_jitter_noise=0.0,
156
- **kwargs,
157
- ):
158
- self.vocab_size = vocab_size
159
- self.max_position_embeddings = max_position_embeddings
160
- self.hidden_size = hidden_size
161
- self.intermediate_size = intermediate_size
162
- self.num_hidden_layers = num_hidden_layers
163
- self.num_attention_heads = num_attention_heads
164
- self.sliding_window = sliding_window
165
-
166
- # for backward compatibility
167
- if num_key_value_heads is None:
168
- num_key_value_heads = num_attention_heads
169
-
170
- self.num_key_value_heads = num_key_value_heads
171
- self.hidden_act = hidden_act
172
- self.initializer_range = initializer_range
173
- self.rms_norm_eps = rms_norm_eps
174
- self.use_cache = use_cache
175
- self.rope_theta = rope_theta
176
- self.attention_dropout = attention_dropout
177
- self.head_dim = head_dim
178
-
179
- self.num_experts_per_tok = num_experts_per_tok
180
- self.num_local_experts = num_local_experts
181
- self.output_router_logits = output_router_logits
182
- self.router_aux_loss_coef = router_aux_loss_coef
183
- self.router_jitter_noise = router_jitter_noise
184
-
185
- self.use_qk_norm = kwargs.pop("use_qk_norm", False)
186
- self.rotary_dim = kwargs.pop("rotary_dim", self.head_dim)
187
- self.partial_rotary_factor = kwargs.pop("partial_rotary_factor", 1)
188
- if self.head_dim is not None:
189
- self.partial_rotary_factor = self.rotary_dim / self.head_dim
190
-
191
- super().__init__(
192
- pad_token_id=pad_token_id,
193
- bos_token_id=bos_token_id,
194
- eos_token_id=eos_token_id,
195
- tie_word_embeddings=tie_word_embeddings,
196
- **kwargs,
197
- )
198
-
199
-
200
- __all__ = ["MiniMaxM2Config"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/modeling_minimax_m2-checkpoint.py DELETED
@@ -1,707 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_minimax_m2.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- # coding=utf-8
8
- # Copyright 2025 the HuggingFace Team. All rights reserved.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
-
23
- from collections.abc import Callable
24
- from typing import Optional, Union
25
-
26
- import torch
27
- from torch import nn
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.cache_utils import Cache, DynamicCache
31
- from transformers.generation import GenerationMixin
32
- from transformers.integrations import use_kernel_forward_from_hub
33
- from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
34
- from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
35
- from transformers.modeling_layers import (
36
- GenericForQuestionAnswering,
37
- GenericForSequenceClassification,
38
- GenericForTokenClassification,
39
- GradientCheckpointingLayer,
40
- )
41
- from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
42
- from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
43
- from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
44
- from transformers.processing_utils import Unpack
45
- from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
46
- from transformers.utils.deprecation import deprecate_kwarg
47
- from transformers.utils.generic import OutputRecorder, check_model_inputs
48
- from .configuration_minimax_m2 import MiniMaxM2Config
49
-
50
-
51
- class MiniMaxM2MLP(nn.Module):
52
- def __init__(self, config: MiniMaxM2Config):
53
- super().__init__()
54
- self.ffn_dim = config.intermediate_size
55
- self.hidden_dim = config.hidden_size
56
-
57
- self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
58
- self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
59
- self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
60
-
61
- self.act_fn = ACT2FN[config.hidden_act]
62
-
63
- def forward(self, hidden_states):
64
- current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
65
- current_hidden_states = self.w2(current_hidden_states)
66
- return current_hidden_states
67
-
68
-
69
- class MiniMaxM2Experts(nn.ModuleList):
70
- """
71
- ModuleList of experts.
72
- """
73
-
74
- def __init__(self, config: MiniMaxM2Config):
75
- super().__init__()
76
- self.top_k = config.num_experts_per_tok
77
- self.num_experts = config.num_local_experts
78
- for _ in range(self.num_experts):
79
- self.append(MiniMaxM2MLP(config))
80
-
81
- def forward(
82
- self, hidden_states: torch.Tensor, top_k_index: torch.Tensor, top_k_weights: torch.Tensor
83
- ) -> torch.Tensor:
84
- """
85
- Args:
86
- hidden_states: (batch_size * sequence_length, hidden_dim)
87
- selected_experts: (batch_size * sequence_length, top_k)
88
- routing_weights: (batch_size * sequence_length, top_k)
89
- Returns:
90
- (batch_size * sequence_length, hidden_dim)
91
- """
92
- final_hidden_states = torch.zeros_like(hidden_states)
93
- expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts).permute(2, 1, 0)
94
-
95
- expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
96
- for expert_idx in expert_hit:
97
- idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
98
- current_state = hidden_states[None, top_x].reshape(-1, hidden_states.shape[-1])
99
- current_hidden_states = self[expert_idx](current_state) * top_k_weights[top_x, idx, None]
100
- final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
101
- return final_hidden_states
102
-
103
-
104
- class MiniMaxM2SparseMoeBlock(nn.Module):
105
- def __init__(self, config):
106
- super().__init__()
107
- self.top_k = config.num_experts_per_tok
108
- self.jitter_noise = config.router_jitter_noise
109
- self.gate = nn.Linear(config.hidden_size, config.num_local_experts, bias=False)
110
- self.experts = MiniMaxM2Experts(config)
111
- self.register_buffer("e_score_correction_bias", torch.zeros(config.num_local_experts))
112
-
113
- def route_tokens_to_experts(self, router_logits):
114
- routing_weights = torch.nn.functional.sigmoid(router_logits.float())
115
- scores_for_choice = routing_weights + self.e_score_correction_bias
116
- _, top_k_index = torch.topk(scores_for_choice, self.top_k, dim=-1, sorted=False)
117
- top_k_weights = routing_weights.gather(1, top_k_index)
118
- top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
119
- return top_k_index, top_k_weights.to(router_logits.dtype)
120
-
121
- def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
122
- batch_size, sequence_length, hidden_dim = hidden_states.shape
123
- if self.training and self.jitter_noise > 0:
124
- hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
125
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
126
- router_logits = self.gate(hidden_states)
127
- top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
128
- hidden_states = self.experts(hidden_states, top_k_index, top_k_weights.to(hidden_states.dtype))
129
- hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
130
- return hidden_states, router_logits
131
-
132
-
133
- @use_kernel_forward_from_hub("RMSNorm")
134
- class MiniMaxM2RMSNorm(nn.Module):
135
- def __init__(self, hidden_size, eps=1e-6):
136
- """
137
- MiniMaxM2RMSNorm is equivalent to T5LayerNorm
138
- """
139
- super().__init__()
140
- self.weight = nn.Parameter(torch.ones(hidden_size))
141
- self.variance_epsilon = eps
142
-
143
- def forward(self, hidden_states):
144
- input_dtype = hidden_states.dtype
145
- hidden_states = hidden_states.to(torch.float32)
146
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
147
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
148
- return self.weight * hidden_states.to(input_dtype)
149
-
150
- def extra_repr(self):
151
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
152
-
153
-
154
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
155
- """
156
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
157
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
158
- """
159
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
160
- if n_rep == 1:
161
- return hidden_states
162
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
163
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
164
-
165
-
166
- def eager_attention_forward(
167
- module: nn.Module,
168
- query: torch.Tensor,
169
- key: torch.Tensor,
170
- value: torch.Tensor,
171
- attention_mask: Optional[torch.Tensor],
172
- scaling: float,
173
- dropout: float = 0.0,
174
- **kwargs: Unpack[TransformersKwargs],
175
- ):
176
- key_states = repeat_kv(key, module.num_key_value_groups)
177
- value_states = repeat_kv(value, module.num_key_value_groups)
178
-
179
- attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
180
- if attention_mask is not None:
181
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
182
- attn_weights = attn_weights + causal_mask
183
-
184
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
185
- attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
186
- attn_output = torch.matmul(attn_weights, value_states)
187
- attn_output = attn_output.transpose(1, 2).contiguous()
188
-
189
- return attn_output, attn_weights
190
-
191
-
192
- def rotate_half(x):
193
- """Rotates half the hidden dims of the input."""
194
- x1 = x[..., : x.shape[-1] // 2]
195
- x2 = x[..., x.shape[-1] // 2 :]
196
- return torch.cat((-x2, x1), dim=-1)
197
-
198
-
199
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
200
- """Applies Rotary Position Embedding to the query and key tensors.
201
-
202
- Args:
203
- q (`torch.Tensor`): The query tensor.
204
- k (`torch.Tensor`): The key tensor.
205
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
206
- sin (`torch.Tensor`): The sine part of the rotary embedding.
207
- position_ids (`torch.Tensor`, *optional*):
208
- Deprecated and unused.
209
- unsqueeze_dim (`int`, *optional*, defaults to 1):
210
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
211
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
212
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
213
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
214
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
215
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
216
- Returns:
217
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
218
- """
219
- cos = cos.unsqueeze(unsqueeze_dim)
220
- sin = sin.unsqueeze(unsqueeze_dim)
221
-
222
- # Keep half or full tensor for later concatenation
223
- rotary_dim = cos.shape[-1]
224
- q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
225
- k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
226
-
227
- # Apply rotary embeddings on the first half or full tensor
228
- q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
229
- k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
230
-
231
- # Concatenate back to full shape
232
- q_embed = torch.cat([q_embed, q_pass], dim=-1)
233
- k_embed = torch.cat([k_embed, k_pass], dim=-1)
234
- return q_embed, k_embed
235
-
236
-
237
- class MiniMaxM2Attention(nn.Module):
238
- """Multi-headed attention from 'Attention Is All You Need' paper"""
239
-
240
- def __init__(self, config: MiniMaxM2Config, layer_idx: int):
241
- super().__init__()
242
- self.config = config
243
- self.layer_idx = layer_idx
244
- self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
245
- self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
246
- self.scaling = self.head_dim**-0.5
247
- self.attention_dropout = config.attention_dropout
248
- self.is_causal = True
249
- self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
250
- self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
251
- self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
252
- self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
253
-
254
- self.use_qk_norm = config.use_qk_norm
255
- if self.use_qk_norm:
256
- self.q_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_attention_heads, eps=config.rms_norm_eps)
257
- self.k_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_key_value_heads, eps=config.rms_norm_eps)
258
-
259
- @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
260
- def forward(
261
- self,
262
- hidden_states: torch.Tensor,
263
- position_embeddings: tuple[torch.Tensor, torch.Tensor],
264
- attention_mask: Optional[torch.Tensor],
265
- past_key_values: Optional[Cache] = None,
266
- cache_position: Optional[torch.LongTensor] = None,
267
- **kwargs: Unpack[FlashAttentionKwargs],
268
- ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
269
- input_shape = hidden_states.shape[:-1]
270
- hidden_shape = (*input_shape, -1, self.head_dim)
271
-
272
- query_states = self.q_proj(hidden_states)
273
- key_states = self.k_proj(hidden_states)
274
- value_states = self.v_proj(hidden_states)
275
-
276
- if self.use_qk_norm: # main diff from Llama
277
- query_states = self.q_norm(query_states)
278
- key_states = self.k_norm(key_states)
279
-
280
- key_states = key_states.view(hidden_shape)
281
- query_states = query_states.view(hidden_shape)
282
- value_states = value_states.view(hidden_shape)
283
-
284
- query_states = query_states.transpose(1, 2)
285
- key_states = key_states.transpose(1, 2)
286
- value_states = value_states.transpose(1, 2)
287
-
288
- cos, sin = position_embeddings
289
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
290
-
291
- if past_key_values is not None:
292
- # sin and cos are specific to RoPE models; position_ids needed for the static cache
293
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
294
- key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
295
-
296
- attention_interface: Callable = eager_attention_forward
297
- if self.config._attn_implementation != "eager":
298
- attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
299
-
300
- attn_output, attn_weights = attention_interface(
301
- self,
302
- query_states,
303
- key_states,
304
- value_states,
305
- attention_mask,
306
- dropout=0.0 if not self.training else self.attention_dropout,
307
- scaling=self.scaling,
308
- **kwargs,
309
- )
310
-
311
- attn_output = attn_output.reshape(*input_shape, -1).contiguous()
312
- attn_output = self.o_proj(attn_output)
313
- return attn_output, attn_weights
314
-
315
-
316
- class MiniMaxM2DecoderLayer(GradientCheckpointingLayer):
317
- def __init__(self, config: MiniMaxM2Config, layer_idx: int):
318
- super().__init__()
319
- self.hidden_size = config.hidden_size
320
-
321
- self.self_attn = MiniMaxM2Attention(config, layer_idx)
322
-
323
- self.block_sparse_moe = MiniMaxM2SparseMoeBlock(config)
324
- self.input_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
325
- self.post_attention_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
326
-
327
- @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
328
- def forward(
329
- self,
330
- hidden_states: torch.Tensor,
331
- position_embeddings: tuple[torch.Tensor, torch.Tensor],
332
- attention_mask: Optional[torch.Tensor] = None,
333
- position_ids: Optional[torch.LongTensor] = None,
334
- past_key_values: Optional[Cache] = None,
335
- cache_position: Optional[torch.LongTensor] = None,
336
- **kwargs: Unpack[TransformersKwargs],
337
- ) -> torch.FloatTensor:
338
- residual = hidden_states
339
-
340
- hidden_states = self.input_layernorm(hidden_states)
341
-
342
- # Self Attention
343
- hidden_states, _ = self.self_attn(
344
- hidden_states=hidden_states,
345
- position_embeddings=position_embeddings,
346
- attention_mask=attention_mask,
347
- position_ids=position_ids,
348
- past_key_values=past_key_values,
349
- cache_position=cache_position,
350
- **kwargs,
351
- )
352
- hidden_states = residual + hidden_states
353
-
354
- # Fully Connected
355
- residual = hidden_states
356
- hidden_states = self.post_attention_layernorm(hidden_states)
357
- hidden_states, _ = self.block_sparse_moe(hidden_states)
358
- hidden_states = residual + hidden_states
359
-
360
- return hidden_states
361
-
362
-
363
- class MiniMaxM2RotaryEmbedding(nn.Module):
364
- inv_freq: torch.Tensor # fix linting for `register_buffer`
365
-
366
- def __init__(self, config: MiniMaxM2Config, device=None):
367
- super().__init__()
368
- # BC: "rope_type" was originally "type"
369
- if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
370
- self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
371
- else:
372
- self.rope_type = "default"
373
- self.max_seq_len_cached = config.max_position_embeddings
374
- self.original_max_seq_len = config.max_position_embeddings
375
-
376
- self.config = config
377
- self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
378
-
379
- inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
380
- self.register_buffer("inv_freq", inv_freq, persistent=False)
381
- self.original_inv_freq = self.inv_freq
382
-
383
- @torch.no_grad()
384
- @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
385
- def forward(self, x, position_ids):
386
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
387
- position_ids_expanded = position_ids[:, None, :].float()
388
-
389
- device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
390
- with torch.autocast(device_type=device_type, enabled=False): # Force float32
391
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
392
- emb = torch.cat((freqs, freqs), dim=-1)
393
- cos = emb.cos() * self.attention_scaling
394
- sin = emb.sin() * self.attention_scaling
395
-
396
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
397
-
398
-
399
- @auto_docstring
400
- class MiniMaxM2PreTrainedModel(PreTrainedModel):
401
- config: MiniMaxM2Config
402
- base_model_prefix = "model"
403
- supports_gradient_checkpointing = True
404
- _no_split_modules = ["MiniMaxM2DecoderLayer"]
405
- _skip_keys_device_placement = ["past_key_values"]
406
- _supports_flash_attn = True
407
- _supports_sdpa = True
408
- _supports_flex_attn = True
409
- _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
410
- _supports_attention_backend = True
411
- _can_record_outputs = {
412
- "router_logits": OutputRecorder(MiniMaxM2SparseMoeBlock, index=1),
413
- "hidden_states": MiniMaxM2DecoderLayer,
414
- "attentions": MiniMaxM2Attention,
415
- }
416
-
417
-
418
- @auto_docstring
419
- class MiniMaxM2Model(MiniMaxM2PreTrainedModel):
420
- def __init__(self, config: MiniMaxM2Config):
421
- super().__init__(config)
422
- self.padding_idx = config.pad_token_id
423
- self.vocab_size = config.vocab_size
424
-
425
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
426
- self.layers = nn.ModuleList(
427
- [MiniMaxM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
428
- )
429
- self.norm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
430
- self.rotary_emb = MiniMaxM2RotaryEmbedding(config=config)
431
- self.gradient_checkpointing = False
432
-
433
- # Initialize weights and apply final processing
434
- self.post_init()
435
-
436
- @check_model_inputs
437
- @auto_docstring
438
- def forward(
439
- self,
440
- input_ids: Optional[torch.LongTensor] = None,
441
- attention_mask: Optional[torch.Tensor] = None,
442
- position_ids: Optional[torch.LongTensor] = None,
443
- past_key_values: Optional[Cache] = None,
444
- inputs_embeds: Optional[torch.FloatTensor] = None,
445
- use_cache: Optional[bool] = None,
446
- cache_position: Optional[torch.LongTensor] = None,
447
- **kwargs: Unpack[TransformersKwargs],
448
- ) -> MoeModelOutputWithPast:
449
- if (input_ids is None) ^ (inputs_embeds is not None):
450
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
451
-
452
- if use_cache and past_key_values is None:
453
- past_key_values = DynamicCache(config=self.config)
454
-
455
- if inputs_embeds is None:
456
- inputs_embeds = self.embed_tokens(input_ids)
457
-
458
- if cache_position is None:
459
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
460
- cache_position = torch.arange(
461
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
462
- )
463
- if position_ids is None:
464
- position_ids = cache_position.unsqueeze(0)
465
-
466
- mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
467
- causal_mask = mask_function(
468
- config=self.config,
469
- input_embeds=inputs_embeds,
470
- attention_mask=attention_mask,
471
- cache_position=cache_position,
472
- past_key_values=past_key_values,
473
- position_ids=position_ids,
474
- )
475
-
476
- hidden_states = inputs_embeds
477
-
478
- # create position embeddings to be shared across the decoder layers
479
- position_embeddings = self.rotary_emb(hidden_states, position_ids)
480
-
481
- for decoder_layer in self.layers[: self.config.num_hidden_layers]:
482
- hidden_states = decoder_layer(
483
- hidden_states,
484
- position_embeddings=position_embeddings,
485
- attention_mask=causal_mask,
486
- position_ids=position_ids,
487
- past_key_values=past_key_values,
488
- use_cache=use_cache,
489
- cache_position=cache_position,
490
- **kwargs,
491
- )
492
-
493
- hidden_states = self.norm(hidden_states)
494
-
495
- return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
496
- last_hidden_state=hidden_states,
497
- past_key_values=past_key_values,
498
- )
499
-
500
-
501
- def load_balancing_loss_func(
502
- gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
503
- num_experts: Optional[int] = None,
504
- top_k=2,
505
- attention_mask: Optional[torch.Tensor] = None,
506
- ) -> Union[torch.Tensor, int]:
507
- r"""
508
- Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
509
-
510
- See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
511
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
512
- experts is too unbalanced.
513
-
514
- Args:
515
- gate_logits:
516
- Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
517
- shape [batch_size X sequence_length, num_experts].
518
- num_experts:
519
- Number of experts
520
- top_k:
521
- The number of experts to route per-token, can be also interpreted as the `top-k` routing
522
- parameter.
523
- attention_mask (`torch.Tensor`, *optional*):
524
- The attention_mask used in forward function
525
- shape [batch_size X sequence_length] if not None.
526
-
527
- Returns:
528
- The auxiliary loss.
529
- """
530
- if gate_logits is None or not isinstance(gate_logits, tuple):
531
- return 0
532
-
533
- if isinstance(gate_logits, tuple):
534
- compute_device = gate_logits[0].device
535
- concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
536
-
537
- routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
538
-
539
- _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
540
-
541
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
542
-
543
- if attention_mask is None:
544
- # Compute the percentage of tokens routed to each experts
545
- tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
546
-
547
- # Compute the average probability of routing to these experts
548
- router_prob_per_expert = torch.mean(routing_weights, dim=0)
549
- else:
550
- batch_size, sequence_length = attention_mask.shape
551
- num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
552
-
553
- # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
554
- expert_attention_mask = (
555
- attention_mask[None, :, :, None, None]
556
- .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
557
- .reshape(-1, top_k, num_experts)
558
- .to(compute_device)
559
- )
560
-
561
- # Compute the percentage of tokens routed to each experts
562
- tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
563
- expert_attention_mask, dim=0
564
- )
565
-
566
- # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
567
- router_per_expert_attention_mask = (
568
- attention_mask[None, :, :, None]
569
- .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
570
- .reshape(-1, num_experts)
571
- .to(compute_device)
572
- )
573
-
574
- # Compute the average probability of routing to these experts
575
- router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
576
- router_per_expert_attention_mask, dim=0
577
- )
578
-
579
- overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
580
- return overall_loss * num_experts
581
-
582
-
583
- @auto_docstring
584
- class MiniMaxM2ForCausalLM(MiniMaxM2PreTrainedModel, GenerationMixin):
585
- _tied_weights_keys = ["lm_head.weight"]
586
- _tp_plan = {"lm_head": "colwise_rep"}
587
- _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
588
-
589
- def __init__(self, config):
590
- super().__init__(config)
591
- self.model = MiniMaxM2Model(config)
592
- self.vocab_size = config.vocab_size
593
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
594
- self.router_aux_loss_coef = config.router_aux_loss_coef
595
- self.num_experts = config.num_local_experts
596
- self.num_experts_per_tok = config.num_experts_per_tok
597
-
598
- # Initialize weights and apply final processing
599
- self.post_init()
600
-
601
- @can_return_tuple
602
- @auto_docstring
603
- def forward(
604
- self,
605
- input_ids: Optional[torch.LongTensor] = None,
606
- attention_mask: Optional[torch.Tensor] = None,
607
- position_ids: Optional[torch.LongTensor] = None,
608
- past_key_values: Optional[Cache] = None,
609
- inputs_embeds: Optional[torch.FloatTensor] = None,
610
- labels: Optional[torch.LongTensor] = None,
611
- use_cache: Optional[bool] = None,
612
- output_router_logits: Optional[bool] = None,
613
- cache_position: Optional[torch.LongTensor] = None,
614
- logits_to_keep: Union[int, torch.Tensor] = 0,
615
- **kwargs: Unpack[TransformersKwargs],
616
- ) -> MoeCausalLMOutputWithPast:
617
- r"""
618
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
619
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
620
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
621
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
622
-
623
- Example:
624
-
625
- ```python
626
- >>> from transformers import AutoTokenizer, MiniMaxM2ForCausalLM
627
-
628
- >>> model = MiniMaxM2ForCausalLM.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
629
- >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
630
-
631
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
632
- >>> inputs = tokenizer(prompt, return_tensors="pt")
633
-
634
- >>> # Generate
635
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
636
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
637
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
638
- ```"""
639
-
640
- output_router_logits = (
641
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
642
- )
643
-
644
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
645
- outputs: MoeModelOutputWithPast = self.model(
646
- input_ids=input_ids,
647
- attention_mask=attention_mask,
648
- position_ids=position_ids,
649
- past_key_values=past_key_values,
650
- inputs_embeds=inputs_embeds,
651
- use_cache=use_cache,
652
- output_router_logits=output_router_logits,
653
- cache_position=cache_position,
654
- **kwargs,
655
- )
656
-
657
- hidden_states = outputs.last_hidden_state
658
- # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
659
- slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
660
- logits = self.lm_head(hidden_states[:, slice_indices, :])
661
-
662
- loss = None
663
- if labels is not None:
664
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
665
-
666
- aux_loss = None
667
- if output_router_logits:
668
- aux_loss = load_balancing_loss_func(
669
- outputs.router_logits,
670
- self.num_experts,
671
- self.num_experts_per_tok,
672
- attention_mask,
673
- )
674
- if labels is not None:
675
- loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
676
-
677
- return MoeCausalLMOutputWithPast(
678
- loss=loss,
679
- aux_loss=aux_loss,
680
- logits=logits,
681
- past_key_values=outputs.past_key_values,
682
- hidden_states=outputs.hidden_states,
683
- attentions=outputs.attentions,
684
- router_logits=outputs.router_logits,
685
- )
686
-
687
-
688
- class MiniMaxM2ForSequenceClassification(GenericForSequenceClassification, MiniMaxM2PreTrainedModel):
689
- pass
690
-
691
-
692
- class MiniMaxM2ForTokenClassification(GenericForTokenClassification, MiniMaxM2PreTrainedModel):
693
- pass
694
-
695
-
696
- class MiniMaxM2ForQuestionAnswering(GenericForQuestionAnswering, MiniMaxM2PreTrainedModel):
697
- pass
698
-
699
-
700
- __all__ = [
701
- "MiniMaxM2ForCausalLM",
702
- "MiniMaxM2ForQuestionAnswering",
703
- "MiniMaxM2Model",
704
- "MiniMaxM2PreTrainedModel",
705
- "MiniMaxM2ForSequenceClassification",
706
- "MiniMaxM2ForTokenClassification",
707
- ]