Delete files .ipynb* with huggingface_hub
Browse files
.ipynb_checkpoints/configuration_minimax_m2-checkpoint.py
DELETED
|
@@ -1,200 +0,0 @@
|
|
| 1 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
-
# This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
|
| 3 |
-
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
-
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
-
# modular_minimax_m2.py file directly. One of our CI enforces this.
|
| 6 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
-
# coding=utf-8
|
| 8 |
-
# Copyright 2025 the HuggingFace Team. All rights reserved.
|
| 9 |
-
#
|
| 10 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
-
# you may not use this file except in compliance with the License.
|
| 12 |
-
# You may obtain a copy of the License at
|
| 13 |
-
#
|
| 14 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
-
#
|
| 16 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
-
# See the License for the specific language governing permissions and
|
| 20 |
-
# limitations under the License.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class MiniMaxM2Config(PretrainedConfig):
|
| 27 |
-
r"""
|
| 28 |
-
This is the configuration class to store the configuration of a [`MiniMaxM2Model`]. It is used to instantiate an
|
| 29 |
-
MiniMaxM2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 30 |
-
with the defaults will yield a similar configuration to that of the MiniMaxM2-7B-v0.1 or MiniMaxM2-7B-Instruct-v0.1.
|
| 31 |
-
|
| 32 |
-
[minimax_m2ai/MiniMaxM2-8x7B](https://huggingface.co/minimax_m2ai/MiniMaxM2-8x7B)
|
| 33 |
-
[minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1](https://huggingface.co/minimax_m2ai/MiniMaxM2-7B-Instruct-v0.1)
|
| 34 |
-
|
| 35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 36 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
Args:
|
| 40 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
| 41 |
-
Vocabulary size of the MiniMaxM2 model. Defines the number of different tokens that can be represented by the
|
| 42 |
-
`inputs_ids` passed when calling [`MiniMaxM2Model`]
|
| 43 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
| 44 |
-
Dimension of the hidden representations.
|
| 45 |
-
intermediate_size (`int`, *optional*, defaults to 14336):
|
| 46 |
-
Dimension of the MLP representations.
|
| 47 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 48 |
-
Number of hidden layers in the Transformer encoder.
|
| 49 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 50 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 51 |
-
num_key_value_heads (`int`, *optional*, defaults to 8):
|
| 52 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 53 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 54 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 55 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 56 |
-
by meanpooling all the original heads within that group. For more details, check out [this
|
| 57 |
-
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
|
| 58 |
-
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
|
| 59 |
-
The attention head dimension.
|
| 60 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 61 |
-
The non-linear activation function (function or string) in the decoder.
|
| 62 |
-
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
| 63 |
-
The maximum sequence length that this model might ever be used with. MiniMaxM2's sliding window attention
|
| 64 |
-
allows sequence of up to 4096*32 tokens.
|
| 65 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 66 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 67 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 68 |
-
The epsilon used by the rms normalization layers.
|
| 69 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
| 70 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 71 |
-
relevant if `config.is_decoder=True`.
|
| 72 |
-
pad_token_id (`int`, *optional*):
|
| 73 |
-
The id of the padding token.
|
| 74 |
-
bos_token_id (`int`, *optional*, defaults to 1):
|
| 75 |
-
The id of the "beginning-of-sequence" token.
|
| 76 |
-
eos_token_id (`int`, *optional*, defaults to 2):
|
| 77 |
-
The id of the "end-of-sequence" token.
|
| 78 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 79 |
-
Whether the model's input and output word embeddings should be tied.
|
| 80 |
-
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
| 81 |
-
The base period of the RoPE embeddings.
|
| 82 |
-
sliding_window (`int`, *optional*):
|
| 83 |
-
Sliding window attention window size. If not specified, will default to `4096`.
|
| 84 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 85 |
-
The dropout ratio for the attention probabilities.
|
| 86 |
-
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
| 87 |
-
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
| 88 |
-
parameter
|
| 89 |
-
num_local_experts (`int`, *optional*, defaults to 8):
|
| 90 |
-
Number of experts per Sparse MLP layer.
|
| 91 |
-
output_router_logits (`bool`, *optional*, defaults to `False`):
|
| 92 |
-
Whether or not the router logits should be returned by the model. Enabling this will also
|
| 93 |
-
allow the model to output the auxiliary loss. See [here]() for more details
|
| 94 |
-
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
| 95 |
-
The aux loss factor for the total loss.
|
| 96 |
-
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
| 97 |
-
Amount of noise to add to the router.
|
| 98 |
-
|
| 99 |
-
```python
|
| 100 |
-
>>> from transformers import MiniMaxM2Model, MiniMaxM2Config
|
| 101 |
-
|
| 102 |
-
>>> # Initializing a MiniMaxM2 7B style configuration
|
| 103 |
-
>>> configuration = MiniMaxM2Config()
|
| 104 |
-
|
| 105 |
-
>>> # Initializing a model from the MiniMaxM2 7B style configuration
|
| 106 |
-
>>> model = MiniMaxM2Model(configuration)
|
| 107 |
-
|
| 108 |
-
>>> # Accessing the model configuration
|
| 109 |
-
>>> configuration = model.config
|
| 110 |
-
```"""
|
| 111 |
-
|
| 112 |
-
model_type = "minimax_m2"
|
| 113 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 114 |
-
base_model_tp_plan = {
|
| 115 |
-
"layers.*.self_attn.q_proj": "colwise",
|
| 116 |
-
"layers.*.self_attn.k_proj": "colwise",
|
| 117 |
-
"layers.*.self_attn.v_proj": "colwise",
|
| 118 |
-
"layers.*.self_attn.o_proj": "rowwise",
|
| 119 |
-
"layers.*.block_sparse_moe.gate": "colwise_rep", # we need to replicate here to correctly route experts
|
| 120 |
-
"layers.*.block_sparse_moe.experts.*.w1": "colwise",
|
| 121 |
-
"layers.*.block_sparse_moe.experts.*.w2": "rowwise",
|
| 122 |
-
"layers.*.block_sparse_moe.experts.*.w3": "colwise",
|
| 123 |
-
}
|
| 124 |
-
base_model_pp_plan = {
|
| 125 |
-
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 126 |
-
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 127 |
-
"norm": (["hidden_states"], ["hidden_states"]),
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
def __init__(
|
| 131 |
-
self,
|
| 132 |
-
vocab_size=32000,
|
| 133 |
-
hidden_size=4096,
|
| 134 |
-
intermediate_size=14336,
|
| 135 |
-
num_hidden_layers=32,
|
| 136 |
-
num_attention_heads=32,
|
| 137 |
-
num_key_value_heads=8,
|
| 138 |
-
head_dim=None,
|
| 139 |
-
hidden_act="silu",
|
| 140 |
-
max_position_embeddings=4096 * 32,
|
| 141 |
-
initializer_range=0.02,
|
| 142 |
-
rms_norm_eps=1e-5,
|
| 143 |
-
use_cache=True,
|
| 144 |
-
pad_token_id=None,
|
| 145 |
-
bos_token_id=1,
|
| 146 |
-
eos_token_id=2,
|
| 147 |
-
tie_word_embeddings=False,
|
| 148 |
-
rope_theta=1e6,
|
| 149 |
-
sliding_window=None,
|
| 150 |
-
attention_dropout=0.0,
|
| 151 |
-
num_experts_per_tok=2,
|
| 152 |
-
num_local_experts=8,
|
| 153 |
-
output_router_logits=False,
|
| 154 |
-
router_aux_loss_coef=0.001,
|
| 155 |
-
router_jitter_noise=0.0,
|
| 156 |
-
**kwargs,
|
| 157 |
-
):
|
| 158 |
-
self.vocab_size = vocab_size
|
| 159 |
-
self.max_position_embeddings = max_position_embeddings
|
| 160 |
-
self.hidden_size = hidden_size
|
| 161 |
-
self.intermediate_size = intermediate_size
|
| 162 |
-
self.num_hidden_layers = num_hidden_layers
|
| 163 |
-
self.num_attention_heads = num_attention_heads
|
| 164 |
-
self.sliding_window = sliding_window
|
| 165 |
-
|
| 166 |
-
# for backward compatibility
|
| 167 |
-
if num_key_value_heads is None:
|
| 168 |
-
num_key_value_heads = num_attention_heads
|
| 169 |
-
|
| 170 |
-
self.num_key_value_heads = num_key_value_heads
|
| 171 |
-
self.hidden_act = hidden_act
|
| 172 |
-
self.initializer_range = initializer_range
|
| 173 |
-
self.rms_norm_eps = rms_norm_eps
|
| 174 |
-
self.use_cache = use_cache
|
| 175 |
-
self.rope_theta = rope_theta
|
| 176 |
-
self.attention_dropout = attention_dropout
|
| 177 |
-
self.head_dim = head_dim
|
| 178 |
-
|
| 179 |
-
self.num_experts_per_tok = num_experts_per_tok
|
| 180 |
-
self.num_local_experts = num_local_experts
|
| 181 |
-
self.output_router_logits = output_router_logits
|
| 182 |
-
self.router_aux_loss_coef = router_aux_loss_coef
|
| 183 |
-
self.router_jitter_noise = router_jitter_noise
|
| 184 |
-
|
| 185 |
-
self.use_qk_norm = kwargs.pop("use_qk_norm", False)
|
| 186 |
-
self.rotary_dim = kwargs.pop("rotary_dim", self.head_dim)
|
| 187 |
-
self.partial_rotary_factor = kwargs.pop("partial_rotary_factor", 1)
|
| 188 |
-
if self.head_dim is not None:
|
| 189 |
-
self.partial_rotary_factor = self.rotary_dim / self.head_dim
|
| 190 |
-
|
| 191 |
-
super().__init__(
|
| 192 |
-
pad_token_id=pad_token_id,
|
| 193 |
-
bos_token_id=bos_token_id,
|
| 194 |
-
eos_token_id=eos_token_id,
|
| 195 |
-
tie_word_embeddings=tie_word_embeddings,
|
| 196 |
-
**kwargs,
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
__all__ = ["MiniMaxM2Config"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/modeling_minimax_m2-checkpoint.py
DELETED
|
@@ -1,707 +0,0 @@
|
|
| 1 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
-
# This file was automatically generated from src/transformers/models/minimax_m2/modular_minimax_m2.py.
|
| 3 |
-
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
-
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
-
# modular_minimax_m2.py file directly. One of our CI enforces this.
|
| 6 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
-
# coding=utf-8
|
| 8 |
-
# Copyright 2025 the HuggingFace Team. All rights reserved.
|
| 9 |
-
#
|
| 10 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
-
# you may not use this file except in compliance with the License.
|
| 12 |
-
# You may obtain a copy of the License at
|
| 13 |
-
#
|
| 14 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
-
#
|
| 16 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
-
# See the License for the specific language governing permissions and
|
| 20 |
-
# limitations under the License.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
from collections.abc import Callable
|
| 24 |
-
from typing import Optional, Union
|
| 25 |
-
|
| 26 |
-
import torch
|
| 27 |
-
from torch import nn
|
| 28 |
-
|
| 29 |
-
from transformers.activations import ACT2FN
|
| 30 |
-
from transformers.cache_utils import Cache, DynamicCache
|
| 31 |
-
from transformers.generation import GenerationMixin
|
| 32 |
-
from transformers.integrations import use_kernel_forward_from_hub
|
| 33 |
-
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
| 34 |
-
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 35 |
-
from transformers.modeling_layers import (
|
| 36 |
-
GenericForQuestionAnswering,
|
| 37 |
-
GenericForSequenceClassification,
|
| 38 |
-
GenericForTokenClassification,
|
| 39 |
-
GradientCheckpointingLayer,
|
| 40 |
-
)
|
| 41 |
-
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
|
| 42 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 43 |
-
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 44 |
-
from transformers.processing_utils import Unpack
|
| 45 |
-
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
| 46 |
-
from transformers.utils.deprecation import deprecate_kwarg
|
| 47 |
-
from transformers.utils.generic import OutputRecorder, check_model_inputs
|
| 48 |
-
from .configuration_minimax_m2 import MiniMaxM2Config
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class MiniMaxM2MLP(nn.Module):
|
| 52 |
-
def __init__(self, config: MiniMaxM2Config):
|
| 53 |
-
super().__init__()
|
| 54 |
-
self.ffn_dim = config.intermediate_size
|
| 55 |
-
self.hidden_dim = config.hidden_size
|
| 56 |
-
|
| 57 |
-
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
| 58 |
-
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
| 59 |
-
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
| 60 |
-
|
| 61 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
| 62 |
-
|
| 63 |
-
def forward(self, hidden_states):
|
| 64 |
-
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
| 65 |
-
current_hidden_states = self.w2(current_hidden_states)
|
| 66 |
-
return current_hidden_states
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class MiniMaxM2Experts(nn.ModuleList):
|
| 70 |
-
"""
|
| 71 |
-
ModuleList of experts.
|
| 72 |
-
"""
|
| 73 |
-
|
| 74 |
-
def __init__(self, config: MiniMaxM2Config):
|
| 75 |
-
super().__init__()
|
| 76 |
-
self.top_k = config.num_experts_per_tok
|
| 77 |
-
self.num_experts = config.num_local_experts
|
| 78 |
-
for _ in range(self.num_experts):
|
| 79 |
-
self.append(MiniMaxM2MLP(config))
|
| 80 |
-
|
| 81 |
-
def forward(
|
| 82 |
-
self, hidden_states: torch.Tensor, top_k_index: torch.Tensor, top_k_weights: torch.Tensor
|
| 83 |
-
) -> torch.Tensor:
|
| 84 |
-
"""
|
| 85 |
-
Args:
|
| 86 |
-
hidden_states: (batch_size * sequence_length, hidden_dim)
|
| 87 |
-
selected_experts: (batch_size * sequence_length, top_k)
|
| 88 |
-
routing_weights: (batch_size * sequence_length, top_k)
|
| 89 |
-
Returns:
|
| 90 |
-
(batch_size * sequence_length, hidden_dim)
|
| 91 |
-
"""
|
| 92 |
-
final_hidden_states = torch.zeros_like(hidden_states)
|
| 93 |
-
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts).permute(2, 1, 0)
|
| 94 |
-
|
| 95 |
-
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
| 96 |
-
for expert_idx in expert_hit:
|
| 97 |
-
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
|
| 98 |
-
current_state = hidden_states[None, top_x].reshape(-1, hidden_states.shape[-1])
|
| 99 |
-
current_hidden_states = self[expert_idx](current_state) * top_k_weights[top_x, idx, None]
|
| 100 |
-
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 101 |
-
return final_hidden_states
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
class MiniMaxM2SparseMoeBlock(nn.Module):
|
| 105 |
-
def __init__(self, config):
|
| 106 |
-
super().__init__()
|
| 107 |
-
self.top_k = config.num_experts_per_tok
|
| 108 |
-
self.jitter_noise = config.router_jitter_noise
|
| 109 |
-
self.gate = nn.Linear(config.hidden_size, config.num_local_experts, bias=False)
|
| 110 |
-
self.experts = MiniMaxM2Experts(config)
|
| 111 |
-
self.register_buffer("e_score_correction_bias", torch.zeros(config.num_local_experts))
|
| 112 |
-
|
| 113 |
-
def route_tokens_to_experts(self, router_logits):
|
| 114 |
-
routing_weights = torch.nn.functional.sigmoid(router_logits.float())
|
| 115 |
-
scores_for_choice = routing_weights + self.e_score_correction_bias
|
| 116 |
-
_, top_k_index = torch.topk(scores_for_choice, self.top_k, dim=-1, sorted=False)
|
| 117 |
-
top_k_weights = routing_weights.gather(1, top_k_index)
|
| 118 |
-
top_k_weights /= top_k_weights.sum(dim=-1, keepdim=True)
|
| 119 |
-
return top_k_index, top_k_weights.to(router_logits.dtype)
|
| 120 |
-
|
| 121 |
-
def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 122 |
-
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 123 |
-
if self.training and self.jitter_noise > 0:
|
| 124 |
-
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
| 125 |
-
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 126 |
-
router_logits = self.gate(hidden_states)
|
| 127 |
-
top_k_index, top_k_weights = self.route_tokens_to_experts(router_logits)
|
| 128 |
-
hidden_states = self.experts(hidden_states, top_k_index, top_k_weights.to(hidden_states.dtype))
|
| 129 |
-
hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
| 130 |
-
return hidden_states, router_logits
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
@use_kernel_forward_from_hub("RMSNorm")
|
| 134 |
-
class MiniMaxM2RMSNorm(nn.Module):
|
| 135 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 136 |
-
"""
|
| 137 |
-
MiniMaxM2RMSNorm is equivalent to T5LayerNorm
|
| 138 |
-
"""
|
| 139 |
-
super().__init__()
|
| 140 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 141 |
-
self.variance_epsilon = eps
|
| 142 |
-
|
| 143 |
-
def forward(self, hidden_states):
|
| 144 |
-
input_dtype = hidden_states.dtype
|
| 145 |
-
hidden_states = hidden_states.to(torch.float32)
|
| 146 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 147 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 148 |
-
return self.weight * hidden_states.to(input_dtype)
|
| 149 |
-
|
| 150 |
-
def extra_repr(self):
|
| 151 |
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 155 |
-
"""
|
| 156 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 157 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 158 |
-
"""
|
| 159 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 160 |
-
if n_rep == 1:
|
| 161 |
-
return hidden_states
|
| 162 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 163 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def eager_attention_forward(
|
| 167 |
-
module: nn.Module,
|
| 168 |
-
query: torch.Tensor,
|
| 169 |
-
key: torch.Tensor,
|
| 170 |
-
value: torch.Tensor,
|
| 171 |
-
attention_mask: Optional[torch.Tensor],
|
| 172 |
-
scaling: float,
|
| 173 |
-
dropout: float = 0.0,
|
| 174 |
-
**kwargs: Unpack[TransformersKwargs],
|
| 175 |
-
):
|
| 176 |
-
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 177 |
-
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 178 |
-
|
| 179 |
-
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 180 |
-
if attention_mask is not None:
|
| 181 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 182 |
-
attn_weights = attn_weights + causal_mask
|
| 183 |
-
|
| 184 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 185 |
-
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 186 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
| 187 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 188 |
-
|
| 189 |
-
return attn_output, attn_weights
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def rotate_half(x):
|
| 193 |
-
"""Rotates half the hidden dims of the input."""
|
| 194 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 195 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
| 196 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 200 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 201 |
-
|
| 202 |
-
Args:
|
| 203 |
-
q (`torch.Tensor`): The query tensor.
|
| 204 |
-
k (`torch.Tensor`): The key tensor.
|
| 205 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 206 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 207 |
-
position_ids (`torch.Tensor`, *optional*):
|
| 208 |
-
Deprecated and unused.
|
| 209 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 210 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 211 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 212 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 213 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 214 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 215 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 216 |
-
Returns:
|
| 217 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 218 |
-
"""
|
| 219 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
| 220 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
| 221 |
-
|
| 222 |
-
# Keep half or full tensor for later concatenation
|
| 223 |
-
rotary_dim = cos.shape[-1]
|
| 224 |
-
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
| 225 |
-
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
| 226 |
-
|
| 227 |
-
# Apply rotary embeddings on the first half or full tensor
|
| 228 |
-
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 229 |
-
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 230 |
-
|
| 231 |
-
# Concatenate back to full shape
|
| 232 |
-
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
| 233 |
-
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
| 234 |
-
return q_embed, k_embed
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
class MiniMaxM2Attention(nn.Module):
|
| 238 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 239 |
-
|
| 240 |
-
def __init__(self, config: MiniMaxM2Config, layer_idx: int):
|
| 241 |
-
super().__init__()
|
| 242 |
-
self.config = config
|
| 243 |
-
self.layer_idx = layer_idx
|
| 244 |
-
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
|
| 245 |
-
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 246 |
-
self.scaling = self.head_dim**-0.5
|
| 247 |
-
self.attention_dropout = config.attention_dropout
|
| 248 |
-
self.is_causal = True
|
| 249 |
-
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
| 250 |
-
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
| 251 |
-
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
| 252 |
-
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
| 253 |
-
|
| 254 |
-
self.use_qk_norm = config.use_qk_norm
|
| 255 |
-
if self.use_qk_norm:
|
| 256 |
-
self.q_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_attention_heads, eps=config.rms_norm_eps)
|
| 257 |
-
self.k_norm = MiniMaxM2RMSNorm(self.head_dim * config.num_key_value_heads, eps=config.rms_norm_eps)
|
| 258 |
-
|
| 259 |
-
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 260 |
-
def forward(
|
| 261 |
-
self,
|
| 262 |
-
hidden_states: torch.Tensor,
|
| 263 |
-
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 264 |
-
attention_mask: Optional[torch.Tensor],
|
| 265 |
-
past_key_values: Optional[Cache] = None,
|
| 266 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 267 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
| 268 |
-
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 269 |
-
input_shape = hidden_states.shape[:-1]
|
| 270 |
-
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 271 |
-
|
| 272 |
-
query_states = self.q_proj(hidden_states)
|
| 273 |
-
key_states = self.k_proj(hidden_states)
|
| 274 |
-
value_states = self.v_proj(hidden_states)
|
| 275 |
-
|
| 276 |
-
if self.use_qk_norm: # main diff from Llama
|
| 277 |
-
query_states = self.q_norm(query_states)
|
| 278 |
-
key_states = self.k_norm(key_states)
|
| 279 |
-
|
| 280 |
-
key_states = key_states.view(hidden_shape)
|
| 281 |
-
query_states = query_states.view(hidden_shape)
|
| 282 |
-
value_states = value_states.view(hidden_shape)
|
| 283 |
-
|
| 284 |
-
query_states = query_states.transpose(1, 2)
|
| 285 |
-
key_states = key_states.transpose(1, 2)
|
| 286 |
-
value_states = value_states.transpose(1, 2)
|
| 287 |
-
|
| 288 |
-
cos, sin = position_embeddings
|
| 289 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 290 |
-
|
| 291 |
-
if past_key_values is not None:
|
| 292 |
-
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
| 293 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 294 |
-
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 295 |
-
|
| 296 |
-
attention_interface: Callable = eager_attention_forward
|
| 297 |
-
if self.config._attn_implementation != "eager":
|
| 298 |
-
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 299 |
-
|
| 300 |
-
attn_output, attn_weights = attention_interface(
|
| 301 |
-
self,
|
| 302 |
-
query_states,
|
| 303 |
-
key_states,
|
| 304 |
-
value_states,
|
| 305 |
-
attention_mask,
|
| 306 |
-
dropout=0.0 if not self.training else self.attention_dropout,
|
| 307 |
-
scaling=self.scaling,
|
| 308 |
-
**kwargs,
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 312 |
-
attn_output = self.o_proj(attn_output)
|
| 313 |
-
return attn_output, attn_weights
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
class MiniMaxM2DecoderLayer(GradientCheckpointingLayer):
|
| 317 |
-
def __init__(self, config: MiniMaxM2Config, layer_idx: int):
|
| 318 |
-
super().__init__()
|
| 319 |
-
self.hidden_size = config.hidden_size
|
| 320 |
-
|
| 321 |
-
self.self_attn = MiniMaxM2Attention(config, layer_idx)
|
| 322 |
-
|
| 323 |
-
self.block_sparse_moe = MiniMaxM2SparseMoeBlock(config)
|
| 324 |
-
self.input_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 325 |
-
self.post_attention_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 326 |
-
|
| 327 |
-
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 328 |
-
def forward(
|
| 329 |
-
self,
|
| 330 |
-
hidden_states: torch.Tensor,
|
| 331 |
-
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 332 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 333 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 334 |
-
past_key_values: Optional[Cache] = None,
|
| 335 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 336 |
-
**kwargs: Unpack[TransformersKwargs],
|
| 337 |
-
) -> torch.FloatTensor:
|
| 338 |
-
residual = hidden_states
|
| 339 |
-
|
| 340 |
-
hidden_states = self.input_layernorm(hidden_states)
|
| 341 |
-
|
| 342 |
-
# Self Attention
|
| 343 |
-
hidden_states, _ = self.self_attn(
|
| 344 |
-
hidden_states=hidden_states,
|
| 345 |
-
position_embeddings=position_embeddings,
|
| 346 |
-
attention_mask=attention_mask,
|
| 347 |
-
position_ids=position_ids,
|
| 348 |
-
past_key_values=past_key_values,
|
| 349 |
-
cache_position=cache_position,
|
| 350 |
-
**kwargs,
|
| 351 |
-
)
|
| 352 |
-
hidden_states = residual + hidden_states
|
| 353 |
-
|
| 354 |
-
# Fully Connected
|
| 355 |
-
residual = hidden_states
|
| 356 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 357 |
-
hidden_states, _ = self.block_sparse_moe(hidden_states)
|
| 358 |
-
hidden_states = residual + hidden_states
|
| 359 |
-
|
| 360 |
-
return hidden_states
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
class MiniMaxM2RotaryEmbedding(nn.Module):
|
| 364 |
-
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 365 |
-
|
| 366 |
-
def __init__(self, config: MiniMaxM2Config, device=None):
|
| 367 |
-
super().__init__()
|
| 368 |
-
# BC: "rope_type" was originally "type"
|
| 369 |
-
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 370 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 371 |
-
else:
|
| 372 |
-
self.rope_type = "default"
|
| 373 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
| 374 |
-
self.original_max_seq_len = config.max_position_embeddings
|
| 375 |
-
|
| 376 |
-
self.config = config
|
| 377 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 378 |
-
|
| 379 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 380 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 381 |
-
self.original_inv_freq = self.inv_freq
|
| 382 |
-
|
| 383 |
-
@torch.no_grad()
|
| 384 |
-
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 385 |
-
def forward(self, x, position_ids):
|
| 386 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 387 |
-
position_ids_expanded = position_ids[:, None, :].float()
|
| 388 |
-
|
| 389 |
-
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 390 |
-
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 391 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 392 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 393 |
-
cos = emb.cos() * self.attention_scaling
|
| 394 |
-
sin = emb.sin() * self.attention_scaling
|
| 395 |
-
|
| 396 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
@auto_docstring
|
| 400 |
-
class MiniMaxM2PreTrainedModel(PreTrainedModel):
|
| 401 |
-
config: MiniMaxM2Config
|
| 402 |
-
base_model_prefix = "model"
|
| 403 |
-
supports_gradient_checkpointing = True
|
| 404 |
-
_no_split_modules = ["MiniMaxM2DecoderLayer"]
|
| 405 |
-
_skip_keys_device_placement = ["past_key_values"]
|
| 406 |
-
_supports_flash_attn = True
|
| 407 |
-
_supports_sdpa = True
|
| 408 |
-
_supports_flex_attn = True
|
| 409 |
-
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
| 410 |
-
_supports_attention_backend = True
|
| 411 |
-
_can_record_outputs = {
|
| 412 |
-
"router_logits": OutputRecorder(MiniMaxM2SparseMoeBlock, index=1),
|
| 413 |
-
"hidden_states": MiniMaxM2DecoderLayer,
|
| 414 |
-
"attentions": MiniMaxM2Attention,
|
| 415 |
-
}
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
@auto_docstring
|
| 419 |
-
class MiniMaxM2Model(MiniMaxM2PreTrainedModel):
|
| 420 |
-
def __init__(self, config: MiniMaxM2Config):
|
| 421 |
-
super().__init__(config)
|
| 422 |
-
self.padding_idx = config.pad_token_id
|
| 423 |
-
self.vocab_size = config.vocab_size
|
| 424 |
-
|
| 425 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 426 |
-
self.layers = nn.ModuleList(
|
| 427 |
-
[MiniMaxM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 428 |
-
)
|
| 429 |
-
self.norm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 430 |
-
self.rotary_emb = MiniMaxM2RotaryEmbedding(config=config)
|
| 431 |
-
self.gradient_checkpointing = False
|
| 432 |
-
|
| 433 |
-
# Initialize weights and apply final processing
|
| 434 |
-
self.post_init()
|
| 435 |
-
|
| 436 |
-
@check_model_inputs
|
| 437 |
-
@auto_docstring
|
| 438 |
-
def forward(
|
| 439 |
-
self,
|
| 440 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 441 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 442 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 443 |
-
past_key_values: Optional[Cache] = None,
|
| 444 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 445 |
-
use_cache: Optional[bool] = None,
|
| 446 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 447 |
-
**kwargs: Unpack[TransformersKwargs],
|
| 448 |
-
) -> MoeModelOutputWithPast:
|
| 449 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 450 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 451 |
-
|
| 452 |
-
if use_cache and past_key_values is None:
|
| 453 |
-
past_key_values = DynamicCache(config=self.config)
|
| 454 |
-
|
| 455 |
-
if inputs_embeds is None:
|
| 456 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 457 |
-
|
| 458 |
-
if cache_position is None:
|
| 459 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 460 |
-
cache_position = torch.arange(
|
| 461 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 462 |
-
)
|
| 463 |
-
if position_ids is None:
|
| 464 |
-
position_ids = cache_position.unsqueeze(0)
|
| 465 |
-
|
| 466 |
-
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
|
| 467 |
-
causal_mask = mask_function(
|
| 468 |
-
config=self.config,
|
| 469 |
-
input_embeds=inputs_embeds,
|
| 470 |
-
attention_mask=attention_mask,
|
| 471 |
-
cache_position=cache_position,
|
| 472 |
-
past_key_values=past_key_values,
|
| 473 |
-
position_ids=position_ids,
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
hidden_states = inputs_embeds
|
| 477 |
-
|
| 478 |
-
# create position embeddings to be shared across the decoder layers
|
| 479 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 480 |
-
|
| 481 |
-
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 482 |
-
hidden_states = decoder_layer(
|
| 483 |
-
hidden_states,
|
| 484 |
-
position_embeddings=position_embeddings,
|
| 485 |
-
attention_mask=causal_mask,
|
| 486 |
-
position_ids=position_ids,
|
| 487 |
-
past_key_values=past_key_values,
|
| 488 |
-
use_cache=use_cache,
|
| 489 |
-
cache_position=cache_position,
|
| 490 |
-
**kwargs,
|
| 491 |
-
)
|
| 492 |
-
|
| 493 |
-
hidden_states = self.norm(hidden_states)
|
| 494 |
-
|
| 495 |
-
return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
|
| 496 |
-
last_hidden_state=hidden_states,
|
| 497 |
-
past_key_values=past_key_values,
|
| 498 |
-
)
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
def load_balancing_loss_func(
|
| 502 |
-
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
|
| 503 |
-
num_experts: Optional[int] = None,
|
| 504 |
-
top_k=2,
|
| 505 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 506 |
-
) -> Union[torch.Tensor, int]:
|
| 507 |
-
r"""
|
| 508 |
-
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 509 |
-
|
| 510 |
-
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
|
| 511 |
-
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 512 |
-
experts is too unbalanced.
|
| 513 |
-
|
| 514 |
-
Args:
|
| 515 |
-
gate_logits:
|
| 516 |
-
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
| 517 |
-
shape [batch_size X sequence_length, num_experts].
|
| 518 |
-
num_experts:
|
| 519 |
-
Number of experts
|
| 520 |
-
top_k:
|
| 521 |
-
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
| 522 |
-
parameter.
|
| 523 |
-
attention_mask (`torch.Tensor`, *optional*):
|
| 524 |
-
The attention_mask used in forward function
|
| 525 |
-
shape [batch_size X sequence_length] if not None.
|
| 526 |
-
|
| 527 |
-
Returns:
|
| 528 |
-
The auxiliary loss.
|
| 529 |
-
"""
|
| 530 |
-
if gate_logits is None or not isinstance(gate_logits, tuple):
|
| 531 |
-
return 0
|
| 532 |
-
|
| 533 |
-
if isinstance(gate_logits, tuple):
|
| 534 |
-
compute_device = gate_logits[0].device
|
| 535 |
-
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
| 536 |
-
|
| 537 |
-
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
| 538 |
-
|
| 539 |
-
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
| 540 |
-
|
| 541 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
| 542 |
-
|
| 543 |
-
if attention_mask is None:
|
| 544 |
-
# Compute the percentage of tokens routed to each experts
|
| 545 |
-
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
| 546 |
-
|
| 547 |
-
# Compute the average probability of routing to these experts
|
| 548 |
-
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
| 549 |
-
else:
|
| 550 |
-
batch_size, sequence_length = attention_mask.shape
|
| 551 |
-
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
| 552 |
-
|
| 553 |
-
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
| 554 |
-
expert_attention_mask = (
|
| 555 |
-
attention_mask[None, :, :, None, None]
|
| 556 |
-
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
| 557 |
-
.reshape(-1, top_k, num_experts)
|
| 558 |
-
.to(compute_device)
|
| 559 |
-
)
|
| 560 |
-
|
| 561 |
-
# Compute the percentage of tokens routed to each experts
|
| 562 |
-
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
| 563 |
-
expert_attention_mask, dim=0
|
| 564 |
-
)
|
| 565 |
-
|
| 566 |
-
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
| 567 |
-
router_per_expert_attention_mask = (
|
| 568 |
-
attention_mask[None, :, :, None]
|
| 569 |
-
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
| 570 |
-
.reshape(-1, num_experts)
|
| 571 |
-
.to(compute_device)
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
# Compute the average probability of routing to these experts
|
| 575 |
-
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
| 576 |
-
router_per_expert_attention_mask, dim=0
|
| 577 |
-
)
|
| 578 |
-
|
| 579 |
-
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
| 580 |
-
return overall_loss * num_experts
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
@auto_docstring
|
| 584 |
-
class MiniMaxM2ForCausalLM(MiniMaxM2PreTrainedModel, GenerationMixin):
|
| 585 |
-
_tied_weights_keys = ["lm_head.weight"]
|
| 586 |
-
_tp_plan = {"lm_head": "colwise_rep"}
|
| 587 |
-
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 588 |
-
|
| 589 |
-
def __init__(self, config):
|
| 590 |
-
super().__init__(config)
|
| 591 |
-
self.model = MiniMaxM2Model(config)
|
| 592 |
-
self.vocab_size = config.vocab_size
|
| 593 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 594 |
-
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 595 |
-
self.num_experts = config.num_local_experts
|
| 596 |
-
self.num_experts_per_tok = config.num_experts_per_tok
|
| 597 |
-
|
| 598 |
-
# Initialize weights and apply final processing
|
| 599 |
-
self.post_init()
|
| 600 |
-
|
| 601 |
-
@can_return_tuple
|
| 602 |
-
@auto_docstring
|
| 603 |
-
def forward(
|
| 604 |
-
self,
|
| 605 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 606 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 607 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 608 |
-
past_key_values: Optional[Cache] = None,
|
| 609 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 610 |
-
labels: Optional[torch.LongTensor] = None,
|
| 611 |
-
use_cache: Optional[bool] = None,
|
| 612 |
-
output_router_logits: Optional[bool] = None,
|
| 613 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 614 |
-
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 615 |
-
**kwargs: Unpack[TransformersKwargs],
|
| 616 |
-
) -> MoeCausalLMOutputWithPast:
|
| 617 |
-
r"""
|
| 618 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 619 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 620 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 621 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 622 |
-
|
| 623 |
-
Example:
|
| 624 |
-
|
| 625 |
-
```python
|
| 626 |
-
>>> from transformers import AutoTokenizer, MiniMaxM2ForCausalLM
|
| 627 |
-
|
| 628 |
-
>>> model = MiniMaxM2ForCausalLM.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
|
| 629 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/MiniMaxM2-8x7B-v0.1")
|
| 630 |
-
|
| 631 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 632 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 633 |
-
|
| 634 |
-
>>> # Generate
|
| 635 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 636 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 637 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 638 |
-
```"""
|
| 639 |
-
|
| 640 |
-
output_router_logits = (
|
| 641 |
-
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 642 |
-
)
|
| 643 |
-
|
| 644 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 645 |
-
outputs: MoeModelOutputWithPast = self.model(
|
| 646 |
-
input_ids=input_ids,
|
| 647 |
-
attention_mask=attention_mask,
|
| 648 |
-
position_ids=position_ids,
|
| 649 |
-
past_key_values=past_key_values,
|
| 650 |
-
inputs_embeds=inputs_embeds,
|
| 651 |
-
use_cache=use_cache,
|
| 652 |
-
output_router_logits=output_router_logits,
|
| 653 |
-
cache_position=cache_position,
|
| 654 |
-
**kwargs,
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
hidden_states = outputs.last_hidden_state
|
| 658 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 659 |
-
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 660 |
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 661 |
-
|
| 662 |
-
loss = None
|
| 663 |
-
if labels is not None:
|
| 664 |
-
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
| 665 |
-
|
| 666 |
-
aux_loss = None
|
| 667 |
-
if output_router_logits:
|
| 668 |
-
aux_loss = load_balancing_loss_func(
|
| 669 |
-
outputs.router_logits,
|
| 670 |
-
self.num_experts,
|
| 671 |
-
self.num_experts_per_tok,
|
| 672 |
-
attention_mask,
|
| 673 |
-
)
|
| 674 |
-
if labels is not None:
|
| 675 |
-
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
| 676 |
-
|
| 677 |
-
return MoeCausalLMOutputWithPast(
|
| 678 |
-
loss=loss,
|
| 679 |
-
aux_loss=aux_loss,
|
| 680 |
-
logits=logits,
|
| 681 |
-
past_key_values=outputs.past_key_values,
|
| 682 |
-
hidden_states=outputs.hidden_states,
|
| 683 |
-
attentions=outputs.attentions,
|
| 684 |
-
router_logits=outputs.router_logits,
|
| 685 |
-
)
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
class MiniMaxM2ForSequenceClassification(GenericForSequenceClassification, MiniMaxM2PreTrainedModel):
|
| 689 |
-
pass
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
class MiniMaxM2ForTokenClassification(GenericForTokenClassification, MiniMaxM2PreTrainedModel):
|
| 693 |
-
pass
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
class MiniMaxM2ForQuestionAnswering(GenericForQuestionAnswering, MiniMaxM2PreTrainedModel):
|
| 697 |
-
pass
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
__all__ = [
|
| 701 |
-
"MiniMaxM2ForCausalLM",
|
| 702 |
-
"MiniMaxM2ForQuestionAnswering",
|
| 703 |
-
"MiniMaxM2Model",
|
| 704 |
-
"MiniMaxM2PreTrainedModel",
|
| 705 |
-
"MiniMaxM2ForSequenceClassification",
|
| 706 |
-
"MiniMaxM2ForTokenClassification",
|
| 707 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|