e2f753827efa22a90e22a049e38677c5
This model is a fine-tuned version of albert/albert-base-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.8429
- Data Size: 1.0
- Epoch Runtime: 4.8561
- Accuracy: 0.8249
- F1 Macro: 0.7995
- Rouge1: 0.8249
- Rouge2: 0.0
- Rougel: 0.8249
- Rougelsum: 0.8249
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6753 | 0 | 1.1830 | 0.6285 | 0.4244 | 0.6291 | 0.0 | 0.6279 | 0.6285 |
| No log | 1 | 114 | 0.6375 | 0.0078 | 2.4839 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.7253 | 0.0156 | 1.3091 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6300 | 0.0312 | 1.3058 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0205 | 4 | 456 | 0.6197 | 0.0625 | 1.4471 | 0.6781 | 0.4543 | 0.6784 | 0.0 | 0.6781 | 0.6781 |
| 0.0205 | 5 | 570 | 0.6166 | 0.125 | 1.7265 | 0.6822 | 0.4647 | 0.6828 | 0.0 | 0.6822 | 0.6822 |
| 0.0205 | 6 | 684 | 0.4851 | 0.25 | 2.1379 | 0.7730 | 0.7284 | 0.7730 | 0.0 | 0.7730 | 0.7724 |
| 0.1315 | 7 | 798 | 0.4309 | 0.5 | 3.0043 | 0.8090 | 0.7734 | 0.8090 | 0.0 | 0.8090 | 0.8090 |
| 0.3474 | 8.0 | 912 | 0.4288 | 1.0 | 4.9612 | 0.8096 | 0.7640 | 0.8101 | 0.0 | 0.8090 | 0.8096 |
| 0.184 | 9.0 | 1026 | 0.4143 | 1.0 | 4.8683 | 0.8213 | 0.7978 | 0.8208 | 0.0 | 0.8219 | 0.8208 |
| 0.1427 | 10.0 | 1140 | 0.4761 | 1.0 | 4.8142 | 0.8355 | 0.8151 | 0.8355 | 0.0 | 0.8355 | 0.8361 |
| 0.0878 | 11.0 | 1254 | 0.7608 | 1.0 | 4.7622 | 0.8284 | 0.8067 | 0.8284 | 0.0 | 0.8290 | 0.8290 |
| 0.1052 | 12.0 | 1368 | 0.6869 | 1.0 | 4.8797 | 0.8296 | 0.7986 | 0.8299 | 0.0 | 0.8296 | 0.8296 |
| 0.0804 | 13.0 | 1482 | 0.8429 | 1.0 | 4.8561 | 0.8249 | 0.7995 | 0.8249 | 0.0 | 0.8249 | 0.8249 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for contemmcm/e2f753827efa22a90e22a049e38677c5
Base model
albert/albert-base-v1