d0a2530e1d5cbdda4bbeb62fc3c90415
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the fancyzhx/dbpedia_14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0844
- Data Size: 0.25
- Epoch Runtime: 437.3712
- Accuracy: 0.9860
- F1 Macro: 0.9860
- Rouge1: 0.9860
- Rouge2: 0.0
- Rougel: 0.9860
- Rougelsum: 0.9860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 2.7507 | 0 | 53.4048 | 0.0702 | 0.0286 | 0.0702 | 0.0 | 0.0702 | 0.0702 |
| 0.1093 | 1 | 17500 | 0.0732 | 0.0078 | 66.4411 | 0.9844 | 0.9843 | 0.9844 | 0.0 | 0.9844 | 0.9844 |
| 0.0603 | 2 | 35000 | 0.0599 | 0.0156 | 80.9481 | 0.9884 | 0.9884 | 0.9884 | 0.0 | 0.9884 | 0.9884 |
| 0.0643 | 3 | 52500 | 0.0937 | 0.0312 | 102.8833 | 0.9831 | 0.9831 | 0.9831 | 0.0 | 0.9830 | 0.9831 |
| 0.0652 | 4 | 70000 | 0.0751 | 0.0625 | 151.7207 | 0.9861 | 0.9862 | 0.9862 | 0.0 | 0.9861 | 0.9861 |
| 0.0754 | 5 | 87500 | 0.0637 | 0.125 | 247.3297 | 0.9876 | 0.9876 | 0.9876 | 0.0 | 0.9876 | 0.9876 |
| 0.109 | 6 | 105000 | 0.0844 | 0.25 | 437.3712 | 0.9860 | 0.9860 | 0.9860 | 0.0 | 0.9860 | 0.9860 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 10