c4c1d99ced08249334701f7cd0768d7e
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:
- Loss: 1.1046
- Data Size: 0.25
- Epoch Runtime: 286.3061
- Accuracy: 0.3182
- F1 Macro: 0.1609
- Rouge1: 0.3184
- Rouge2: 0.0
- Rougel: 0.3182
- Rougelsum: 0.3183
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1462 | 0 | 7.8372 | 0.3472 | 0.2742 | 0.3472 | 0.0 | 0.3472 | 0.3473 |
| 1.1458 | 1 | 12271 | 1.1202 | 0.0078 | 17.7066 | 0.3273 | 0.1644 | 0.3273 | 0.0 | 0.3275 | 0.3277 |
| 1.114 | 2 | 24542 | 1.0975 | 0.0156 | 26.7801 | 0.3545 | 0.1745 | 0.3544 | 0.0 | 0.3545 | 0.3543 |
| 1.1266 | 3 | 36813 | 1.0998 | 0.0312 | 44.3000 | 0.3545 | 0.1745 | 0.3544 | 0.0 | 0.3545 | 0.3543 |
| 1.1132 | 4 | 49084 | 1.0978 | 0.0625 | 79.6510 | 0.3545 | 0.1745 | 0.3544 | 0.0 | 0.3545 | 0.3543 |
| 1.1094 | 5 | 61355 | 1.0992 | 0.125 | 148.0171 | 0.3545 | 0.1745 | 0.3544 | 0.0 | 0.3545 | 0.3543 |
| 1.1016 | 6 | 73626 | 1.1046 | 0.25 | 286.3061 | 0.3182 | 0.1609 | 0.3184 | 0.0 | 0.3182 | 0.3183 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 17