5ca30c8541099a60bde5251317e53b0f
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the contemmcm/trec dataset. It achieves the following results on the evaluation set:
- Loss: 0.1939
- Data Size: 1.0
- Epoch Runtime: 18.7653
- Accuracy: 0.9729
- F1 Macro: 0.9761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.9527 | 0 | 0.9522 | 0.1229 | 0.0761 |
| No log | 1 | 170 | 1.7989 | 0.0078 | 1.3222 | 0.1875 | 0.1364 |
| No log | 2 | 340 | 1.5707 | 0.0156 | 1.6749 | 0.3729 | 0.2454 |
| No log | 3 | 510 | 1.5574 | 0.0312 | 2.4780 | 0.3771 | 0.2223 |
| No log | 4 | 680 | 0.8417 | 0.0625 | 3.3871 | 0.8146 | 0.6680 |
| 0.069 | 5 | 850 | 0.2423 | 0.125 | 4.7374 | 0.9292 | 0.7785 |
| 0.069 | 6 | 1020 | 0.1945 | 0.25 | 7.1021 | 0.9604 | 0.9373 |
| 0.2407 | 7 | 1190 | 0.1281 | 0.5 | 11.7022 | 0.9646 | 0.9507 |
| 0.1758 | 8.0 | 1360 | 0.1763 | 1.0 | 19.3508 | 0.9667 | 0.9721 |
| 0.1439 | 9.0 | 1530 | 0.1483 | 1.0 | 18.6932 | 0.9708 | 0.9729 |
| 0.0828 | 10.0 | 1700 | 0.3041 | 1.0 | 19.7847 | 0.9354 | 0.8775 |
| 0.0861 | 11.0 | 1870 | 0.1939 | 1.0 | 18.7653 | 0.9729 | 0.9761 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 11