File size: 7,892 Bytes
95af59a 531cfb6 95af59a 7d1c75a 531cfb6 7d1c75a 531cfb6 7d1c75a 95af59a d20925d 95af59a 47ee41f 95af59a 7d2bb1c d20925d 95af59a 7d2bb1c d20925d 95af59a d20925d 7d2bb1c 95af59a 7d2bb1c 95af59a d20925d 7d2bb1c 95af59a d20925d 95af59a d20925d 95af59a d20925d 95af59a 7d2bb1c 575face 95af59a d20925d 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a 7d2bb1c 95af59a d20925d 95af59a 575face 7d2bb1c 95af59a 7d2bb1c 95af59a d20925d 95af59a d20925d 95af59a 7d2bb1c 7d1c75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
license: apache-2.0
language:
- en
tags:
- text-generation
- diffusion
- language-model
- causal-lm
datasets:
- codelion/finepdfs-1B
- codelion/dclm-baseline-1B
- codelion/fineweb-edu-1B
model-index:
- name: dhara-70m
results:
- task:
type: text-generation
dataset:
name: HellaSwag
type: hellaswag
metrics:
- name: Accuracy
type: accuracy
value: 25.58
- task:
type: text-generation
dataset:
name: PIQA
type: piqa
metrics:
- name: Accuracy
type: accuracy
value: 51.58
- task:
type: text-generation
dataset:
name: WinoGrande
type: winogrande
metrics:
- name: Accuracy
type: accuracy
value: 49.64
- task:
type: text-generation
dataset:
name: ARC-Challenge
type: arc_challenge
metrics:
- name: Accuracy
type: accuracy
value: 24.83
- task:
type: text-generation
dataset:
name: MMLU
type: mmlu
metrics:
- name: Accuracy
type: accuracy
value: 23.85
- task:
type: text-generation
dataset:
name: TruthfulQA
type: truthfulqa_mc2
metrics:
- name: Accuracy
type: accuracy
value: 47.5
- task:
type: text-generation
dataset:
name: GSM8K
type: gsm8k
metrics:
- name: Accuracy
type: accuracy
value: 0
- task:
type: text-generation
dataset:
name: Average
type: average
metrics:
- name: Accuracy
type: accuracy
value: 31.85
library_name: transformers
---
# Dhara-70M
A 70M parameter diffusion language model optimized for high-throughput text generation with superior factuality.
## Table of Contents
- [Model Description](#model-description)
- [Training Data](#training-data)
- [Training Details](#training-details)
- [Benchmark Results](#benchmark-results)
- [Usage](#usage)
- [Key Insights](#key-insights)
- [Limitations](#limitations)
- [Citation](#citation)
## Model Description
Dhara-70M is a novel diffusion language model that achieves:
- **3.8x higher throughput** than autoregressive models
- **Best-in-class factuality** on TruthfulQA (47.50%)
- **10x training efficiency** via WSD (Warmup-Stable-Decay) conversion
### Architecture
| Specification | Value |
|--------------|-------|
| **Parameters** | 71.34M |
| **Layers** | 32 |
| **Hidden Size** | 384 |
| **FF Dimension** | 1024 |
| **Attention Heads** | 8 |
| **KV Heads** | 4 (GQA) |
| **Context Length** | 1024 tokens |
| **Position Encoding** | RoPE |
| **Normalization** | RMSNorm |
| **Special Layers** | Canon (depthwise causal convolutions) |
| **Generation Type** | Diffusion (parallel token generation) |
## Training Data
Dhara was trained in two stages:
**Stage 1: AR Pretraining (1B tokens)**
- 40% FinePDFs (400M tokens)
- 30% DCLM Baseline (300M tokens)
- 30% FineWeb-Edu (300M tokens)
**Stage 2: WSD Conversion (100M tokens)**
- Progressive block size warmup (1→4→32→64→1024)
- MDLM diffusion objective
## Training Details
| Parameter | Value |
|-----------|-------|
| **AR Training Tokens** | 1 billion |
| **WSD Conversion Tokens** | 100 million |
| **Batch Size** | 128 effective (8 × 16 gradient accumulation) |
| **Learning Rate** | 5e-4 (AR) / 5e-5 (WSD) |
| **Optimizer** | AdamW |
| **Schedule** | Cosine decay with 2% warmup |
| **Precision** | BF16 |
| **Hardware** | Single NVIDIA A40 GPU |
| **Total Training Time** | ~20 hours |
## Benchmark Results
| Benchmark | Dhara-70M | GPT-2-70M | vs GPT-2 |
|-----------|-----------|-----------|----------|
| HellaSwag (0-shot) | 25.58% | 26.46% | -0.88% |
| PIQA (0-shot) | 51.58% | 58.05% | -6.47% |
| WinoGrande (0-shot) | 49.64% | 52.64% | -3.00% |
| ARC-Challenge (0-shot) | **24.83%** | 22.27% | **+2.56%** |
| MMLU (5-shot) | 23.85% | 25.77% | -1.92% |
| TruthfulQA (0-shot) | **47.50%** | 45.83% | **+1.67%** |
| GSM8K (5-shot) | 0.00% | 1.21% | -1.21% |
| **Average** | **31.85%** | **33.18%** | -1.33% |
### Inference Performance
| Metric | Dhara-70M | GPT-2-70M | Advantage |
|--------|-----------|-----------|-----------|
| Time to First Token | 35.5 ms | ~25 ms | 1.4x slower |
| Throughput | 183.5 tok/s | ~48 tok/s | **3.8x faster** |
| Peak Memory | 0.24 GB | 0.15 GB | 1.6x higher |
## Usage
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("codelion/dhara-70m")
model = AutoModelForCausalLM.from_pretrained(
"codelion/dhara-70m",
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Generate text
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs.input_ids,
max_new_tokens=50,
temperature=0.1,
top_p=0.5,
top_k=5,
repetition_penalty=1.8,
do_sample=True,
pad_token_id=0
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
**Example Output:**
```
The future of artificial intelligence is a big challenge.
This world has the potential to improve, but this time we have no other than "theworld."
The next generation will be more exciting and its very much important for our society's
abilityto develop its
```
### Batch Generation (High Throughput)
```python
# For batch generation, use larger batch sizes
prompts = [
"The future of artificial intelligence is",
"The human brain is capable of",
"Science has shown that",
"Technology continues to evolve"
]
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=50,
temperature=0.1,
top_p=0.5,
top_k=5,
repetition_penalty=1.8,
do_sample=True,
pad_token_id=0
)
for i, output in enumerate(outputs):
print(f"Output {i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")
```
## Key Insights
1. **Throughput vs Accuracy Trade-off**: Dhara trades 1.33% average accuracy for 3.8x higher throughput, making it ideal for batch processing tasks.
2. **Superior Factuality**: Dhara excels on TruthfulQA (+1.67% vs GPT-2), suggesting diffusion models may reduce hallucinations through bidirectional context.
3. **Reasoning Advantage**: ARC-Challenge +2.56% indicates strong performance on reasoning tasks.
4. **WSD Efficiency**: Converting an AR model to diffusion via WSD uses 10x fewer tokens than training from scratch with equivalent quality.
5. **Canon Layers Help**: The depthwise causal convolutions (Canon layers) improve factuality and reasoning with only 0.13% parameter overhead.
## Limitations
- Lower performance on sequential reasoning tasks (GSM8K: 0.00%)
- Higher memory usage due to bidirectional attention
- Slightly higher time-to-first-token latency
- Best suited for batch rather than interactive use cases
## Citation
```bibtex
@article{sharma2025optimal,
title={The Optimal Architecture for Small Language Models},
author={Sharma, Asankhaya},
year={2025},
url={https://huggingface.co/blog/codelion/optimal-model-architecture}
}
```
## Related Work
- [The Optimal Architecture for Small Language Models](https://huggingface.co/blog/codelion/optimal-model-architecture) - Blog post describing this work
- [The 1 Billion Token Challenge: Optimal Dataset Mixing](https://huggingface.co/blog/codelion/optimal-dataset-mixing) - Our previous work on optimal pretraining data
- [GPT-2-70M](https://huggingface.co/codelion/gpt-2-70m) - Our previous model from optimal pretraining experiments
## Contact
For questions or feedback, please open a discussion on the [Hugging Face discussions page](https://huggingface.co/codelion/dhara-70m/discussions). |