buelfhood's picture
irplag_graphcodebert_ep30_bs16_lr2e-05_l512_s42_ppn_loss
c043f39 verified
metadata
library_name: transformers
base_model: microsoft/graphcodebert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: irplag_graphcodebert_ep30_bs16_lr2e-05_l512_s42_ppn_loss
    results: []

irplag_graphcodebert_ep30_bs16_lr2e-05_l512_s42_ppn_loss

This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0294
  • Accuracy: 0.9855
  • Recall: 0.9818
  • Precision: 1.0
  • F1: 0.9908
  • F Beta Score: 0.9873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1 F Beta Score
0.6361 1.0 21 0.5084 0.8551 0.8545 0.9592 0.9038 0.8842
0.3178 2.0 42 0.1907 0.9420 0.9636 0.9636 0.9636 0.9636
0.1278 3.0 63 0.0800 0.9565 0.9455 1.0 0.9720 0.9616
0.1068 4.0 84 0.0553 0.9855 0.9818 1.0 0.9908 0.9873
0.0628 5.0 105 0.0379 0.9855 0.9818 1.0 0.9908 0.9873
0.0402 6.0 126 0.0578 0.9565 0.9455 1.0 0.9720 0.9616
0.0464 7.0 147 0.0294 0.9855 0.9818 1.0 0.9908 0.9873
0.0075 8.0 168 0.2184 0.9855 1.0 0.9821 0.9910 0.9944
0.0941 9.0 189 0.0296 0.9855 0.9818 1.0 0.9908 0.9873
0.0347 10.0 210 0.1595 0.9855 1.0 0.9821 0.9910 0.9944

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.1.0
  • Tokenizers 0.21.4