File size: 9,907 Bytes
79e5981 ef86730 79e5981 ef86730 f5ec19b ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 7472463 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 ef86730 79e5981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: apache-2.0
base_model: allenai/Olmo-3.1-32B-Instruct-DPO
language:
- en
library_name: transformers
datasets:
- allenai/Dolci-Instruct-RL
---
## Model Details
<img alt="Logo for Olmo 3.1 32B Instruct model" src="olmo-instruct.png" width="307px" style="margin-left:'auto' margin-right:'auto' display:'block'">
# Model Card for Olmo-3.1-32B-Instruct
We introduce Olmo 3, a new family of 7B and 32B models both Instruct and Think variants. Long chain-of-thought thinking improves reasoning tasks like math and coding.
Olmo is a series of **O**pen **l**anguage **mo**dels designed to enable the science of language models.
These models are pre-trained on the Dolma 3 dataset and post-trained on the Dolci datasets. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
The core models released in this batch include the following:
| **Stage** | **Olmo 3 7B Think** | **Olmo (3/3.1) 32B Think** | **Olmo 3 7B Instruct** | **Olmo 3.1 32B Instruct** |
|--------------------------|-----------------------|------------------------|---------------------------|----------------------------|
| **Base Model** | [Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-1025-7B) | [Olmo-3-32B](https://huggingface.co/allenai/Olmo-3-1125-32B) | [Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-1025-7B) | [Olmo-3-32B](https://huggingface.co/allenai/Olmo-3-1125-32B) |
| **SFT** | [Olmo-3-7B-Think-SFT](https://huggingface.co/allenai/Olmo-3-7B-Think-SFT) | [Olmo-3-32B-Think-SFT](https://huggingface.co/allenai/Olmo-3-32B-Think-SFT) | [Olmo-3-7B-Instruct-SFT](https://huggingface.co/allenai/Olmo-3-7B-Instruct-SFT) | [Olmo-3.1-32B-Instruct-SFT](https://huggingface.co/allenai/Olmo-3.1-32B-Instruct-SFT) |
| **DPO** | [Olmo-3-7B-Think-DPO](https://huggingface.co/allenai/Olmo-3-7B-Think-DPO) | [Olmo-3-32B-Think-DPO](https://huggingface.co/allenai/Olmo-3-32B-Think-DPO) | [Olmo-3-7B-Instruct-DPO](https://huggingface.co/allenai/Olmo-3-7B-Instruct-DPO) | [Olmo-3.1-32B-Instruct-DPO](https://huggingface.co/allenai/Olmo-3.1-32B-Instruct-DPO) |
| **Final Models (RLVR)** | [Olmo-3-7B-Think](https://huggingface.co/allenai/Olmo-3-7B-Think) | [Olmo-3-32B-Think](https://huggingface.co/allenai/Olmo-3-32B-Think)<br>[Olmo-3.1-32B-Think](https://huggingface.co/allenai/Olmo-3.1-32B-Think) | [Olmo-3-7B-Instruct](https://huggingface.co/allenai/Olmo-3-7B-Instruct) | [Olmo-3.1-32B-Instruct](https://huggingface.co/allenai/Olmo-3.1-32B-Instruct) |
## Installation
Olmo 3 is supported in transformers 4.57.0 or higher:
```bash
pip install transformers>=4.57.0
```
## Inference
You can use OLMo with the standard HuggingFace transformers library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3.1-32B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3.1-32B-Instruct")
message = ["Language modeling is "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
>> 'Language modeling is a key component of any text-based application, but its effectiveness...'
```
For faster performance, you can quantize the model using the following method:
```python
AutoModelForCausalLM.from_pretrained("allenai/Olmo-3.1-32B-Instruct",
torch_dtype=torch.float16,
load_in_8bit=True) # Requires bitsandbytes
```
The quantized model is more sensitive to data types and CUDA operations. To avoid potential issues, it's recommended to pass the inputs directly to CUDA using:
```python
inputs.input_ids.to('cuda')
```
We have released checkpoints for these models. For post-training, the naming convention is `step_XXXX`.
**NOTE**: For this model, due to a checkpointing issue, we only are releasing the final few checkpoints. See our other RL jobs for more detailed intermediate checkpoint suite.
To load a specific model revision with HuggingFace, simply add the argument `revision`:
```bash
olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3.1-32B-Instruct", revision="step_1375")
```
Or, you can access all the revisions for the models via the following code snippet:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("allenai/Olmo-3.1-32B-Instruct")
branches = [b.name for b in out.branches]
```
### Fine-tuning
Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
1. Fine-tune with the OLMo-core repository:
```bash
torchrun --nproc-per-node=8 ./src/scripts/official/MODEL.py run01
```
You can override most configuration options from the command-line. For example, to override the learning rate you could launch the script like this:
```bash
torchrun --nproc-per-node=8 ./src/scripts/train/MODEL.py run01 --train_module.optim.lr=6e-3
```
For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo-core).
### Model Description
- **Developed by:** Allen Institute for AI (Ai2)
- **Model type:** a Transformer style autoregressive language model.
- **Language(s) (NLP):** English
- **License:** This model is licensed under Apache 2.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use).
- **Contact:** Technical inquiries: `[email protected]`. Press: `[email protected]`
- **Date cutoff:** Dec. 2024.
### Model Sources
- **Project Page:** https://allenai.org/olmo
- **Repositories:**
- Open-Instruct for DPO and RLVR: https://github.com/allenai/open-instruct
- OLMo-Core for pre-training and SFT: https://github.com/allenai/OLMo-core
- OLMo-Eval for evaluation: https://github.com/allenai/OLMo-Eval
- **Paper:**: https://allenai.org/papers/olmo3
## Evaluation
| Metric | **Olmo 3.1 32B Instruct SFT** | **Olmo 3.1 32B Instruct DPO** | **Olmo 3.1 32B Instruct** | Apertus 70B | Qwen 3 32B (No Think) | Qwen 3 VL 32B Instruct | Qwen 2.5 32B | Gemma 3 27B | Gemma 2 27B | OLMo 2 32B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| **Math** | | | | | | | | | | |
| MATH | 74.4 | 86.6 | 93.4 | 36.2 | 84.3 | 95.1 | 80.2 | 87.4 | 51.5 | 49.2 |
| AIME 2024 | 12.7 | 35.2 | 67.8 | 0.31 | 27.9 | 75.4 | 15.7 | 28.9 | 4.7 | 4.6 |
| AIME 2025 | 8.2 | 23.3 | 57.9 | 0.1 | 21.3 | 64.2 | 13.4 | 22.9 | 0.9 | 0.9 |
| OMEGA | 15.5 | 33.3 | 42.2 | 5.6 | 23.4 | 44.0 | 19.2 | 24.0 | 9.1 | 9.8 |
| **Reasoning** | | | | | | | | | | |
| BigBenchHard | 69.0 | 82.1 | 84.0 | 57.0 | 80.4 | 89.0 | 80.9 | 82.4 | 66.0 | 65.6 |
| ZebraLogic | 30.6 | 51.1 | 61.7 | 9.0 | 28.4 | 86.7 | 24.1 | 24.8 | 17.2 | 13.3 |
| AGI Eval English | 71.7 | 79.4 | 79.5 | 61.6 | 82.4 | 89.4 | 78.9 | 76.9 | 70.9 | 68.4 |
| **Coding** | | | | | | | | | | |
| HumanEvalPlus | 80.8 | 85.7 | 86.7 | 42.9 | 83.9 | 89.3 | 82.6 | 79.2 | 67.5 | 44.4 |
| MBPP+ | 61.5 | 63.6 | 65.1 | 45.8 | 67.9 | 69.0 | 66.6 | 65.7 | 61.2 | 49.0 |
| LiveCodeBench v3 | 35.4 | 49.6 | 54.7 | 9.7 | 57.5 | 70.2 | 49.9 | 39.0 | 28.7 | 10.6 |
| **IF** | | | | | | | | | | |
| IFEval | 87.7 | 87.3 | 88.8 | 70.4 | 87.5 | 88.1 | 81.9 | 85.4 | 62.1 | 85.8 |
| IFBench | 29.7 | 36.3 | 39.7 | 26.0 | 31.3 | 37.2 | 36.7 | 31.3 | 27.8 | 36.4 |
| **Knowledge & QA** | | | | | | | | | | |
| MMLU | 79.0 | 81.9 | 80.9 | 70.2 | 85.8 | 88.7 | 84.6 | 74.6 | 76.1 | 77.1 |
| PopQA | 23.7 | 28.5 | 25.0 | 33.5 | 25.9 | 25.7 | 28.0 | 30.2 | 30.4 | 37.2 |
| GPQA | 41.3 | 47.9 | 48.6 | 27.9 | 54.4 | 61.4 | 44.6 | 45.0 | 39.9 | 36.4 |
| **Chat** | | | | | | | | | | |
| AlpacaEval 2 LC | 42.2 | 69.7 | 59.8 | 19.9 | 67.9 | 84.3 | 81.9 | 65.5 | 39.8 | 38.0 |
| **Safety** | 92.1 | 88.9 | 89.5 | 77.1 | 81.6 | 85.8 | 82.2 | 68.8 | 74.4 | 84.2 |
## Model Details
#### Stage 1: SFT
- supervised fine-tuning on the Dolci-Think-SFT-7B dataset. This dataset consits of math, code, chat, and general knowledge queries.
- Datasets: [Dolci-Think-SFT-7B](https://huggingface.co/datasets/allenai/dolci-thinking-sft), [Dolci-Instruct-SFT](https://huggingface.co/datasets/allenai/dolci-instruct-sft)
#### Stage 2:DPO
- direct preference optimization on the Dolci-Think-DPO-7B dataset. This dataset consits of math, code, chat, and general knowledge queries.
- Datasets: [Dolci-Think-DPO-7B](https://huggingface.co/datasets/allenai/dolci-thinking-dpo), [Dolci-Instruct-DPO](https://huggingface.co/datasets/allenai/dolci-3-instruct-dpo-with-metadata)
#### Stage 3: RLVR
- reinforcement learning from verifiable rewards on the Dolci-Think-RL-7B dataset. This dataset consits of math, code, instruction-following, and general chat queries.
- Datasets: [Dolci-Think-RL-7B](https://huggingface.co/datasets/allenai/Dolci-Think-RL-7B), [Dolci-Instruct-RL](https://huggingface.co/datasets/allenai/Dolci-Instruct-RL-7B)
## Bias, Risks, and Limitations
Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.
## License
This model is licensed under Apache 2.0. It is intended for research and educational use in accordance with [Ai2's Responsible Use Guidelines](https://allenai.org/responsible-use).
## Citation
A technical manuscript is forthcoming!
## Model Card Contact
For errors in this model card, contact `[email protected]`. |