File size: 12,730 Bytes
a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d ae30578 a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 ae30578 98fa34d ae30578 a08a3b8 ae30578 98fa34d a08a3b8 ae30578 98fa34d ae30578 98fa34d ae30578 a08a3b8 ae30578 98fa34d a08a3b8 ae30578 98fa34d a08a3b8 98fa34d a08a3b8 ae30578 a08a3b8 98fa34d ae30578 a08a3b8 98fa34d ae30578 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 ae30578 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d ae30578 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d a08a3b8 98fa34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
---
language:
- en
license: mit
tags:
- tokenizer
- legal
- bpe
- byte-pair-encoding
- multi-word
- kl3m
- legal-domain
- hierarchical
pipeline_tag: fill-mask
library_name: transformers
---
# KL3M Multi-Word Tokenizer - 32K
This is the **32,768 token** variant of the KL3M (Kelvin Legal Large Language Model) multi-word tokenizer family, optimized for legal domain text with hierarchical vocabulary nesting.
## Overview
The KL3M multi-word tokenizers are a family of byte-pair encoding (BPE) tokenizers trained on ~44GB of legal domain text from the [KL3M dataset](https://aleainstitute.ai/work/kl3m/) (copyright-clean legal corpus from the ALEA Institute). Unlike general-purpose tokenizers, these tokenizers:
- **Capture multi-word legal phrases** as single tokens (e.g., "United States", "with respect to", "Supreme Court")
- **Use hierarchical vocabulary nesting** where smaller vocabularies are proper subsets of larger ones
- **Enable vocabulary expansion experiments** and transfer learning across vocabulary sizes
- **Optimize for legal domain text** while maintaining general-purpose capability
## Tokenizer Family
This tokenizer is part of a hierarchically nested family. Token IDs in smaller vocabularies are **identical** across all larger vocabularies, enabling seamless vocabulary expansion:
| Vocabulary Size | HuggingFace Repository | File Size |
|----------------|------------------------|-----------|
| 4,096 (4K) | [alea-institute/kl3m-multi-word-001-4k](https://huggingface.co/alea-institute/kl3m-multi-word-001-4k) | 118 KB |
| 8,192 (8K) | [alea-institute/kl3m-multi-word-001-8k](https://huggingface.co/alea-institute/kl3m-multi-word-001-8k) | 249 KB |
| 16,384 (16K) | [alea-institute/kl3m-multi-word-001-16k](https://huggingface.co/alea-institute/kl3m-multi-word-001-16k) | 529 KB |
| 32,768 (32K) | [alea-institute/kl3m-multi-word-001-32k](https://huggingface.co/alea-institute/kl3m-multi-word-001-32k) | 1.2 MB |
| 65,536 (64K) | [alea-institute/kl3m-multi-word-001-64k](https://huggingface.co/alea-institute/kl3m-multi-word-001-64k) | 2.4 MB |
| 131,072 (128K) | [alea-institute/kl3m-multi-word-001-128k](https://huggingface.co/alea-institute/kl3m-multi-word-001-128k) | 5.2 MB |
**β You are viewing: 32,768 (32K)**
## Key Features
### 1. Multi-Word Tokenization
Legal text contains frequent multi-word phrases that benefit from being treated as single tokens. The larger vocabularies capture increasingly sophisticated legal terminology:
**Example 1: "with respect to" (common legal phrase)**
```python
from tokenizers import Tokenizer
tok4k = Tokenizer.from_file("tokenizer-4096.json")
tok128k = Tokenizer.from_file("tokenizer-131072.json")
text = "with respect to"
# 4K tokenizer: 3 tokens
tok4k.encode(text).tokens
# ['with respec', 't ', 'to']
tok4k.encode(text).ids
# [2317, 313, 424]
# 128K tokenizer: 1 token
tok128k.encode(text).tokens
# ['with respect to']
tok128k.encode(text).ids
# [15903]
```
**Example 2: "Supreme Court"**
```python
text = "Supreme Court"
# 4K tokenizer: 5 tokens
tok4k.encode(text).tokens
# ['Sup', 'rem', 'e ', 'Cour', 't']
tok4k.encode(text).ids
# [4091, 1878, 296, 3063, 170]
# 128K tokenizer: 1 token
tok128k.encode(text).tokens
# ['Supreme Court']
tok128k.encode(text).ids
# [81445]
```
**Example 3: "United States"**
```python
text = "United States"
# 4K: 2 tokens β 128K: 1 token
tok4k.encode(text).tokens # ['United St', 'ates']
tok128k.encode(text).tokens # ['United States']
```
**Example 4: "Department of State"**
```python
text = "Department of State"
# 4K: 3 tokens β 8K+: 2 tokens
tok4k.encode(text).tokens # ['Depart', 'ment of ', 'State']
tok8k.encode(text).tokens # ['Department of ', 'State']
```
**Other multi-word tokens in larger vocabularies:**
- Legal phrases: "in accordance with", "on behalf of", "pursuant to"
- Frequent constructions: "of the ", "in the ", ", the ", ". The "
- Legal terminology: "the defendant", "the Court", "Therefore,", "However,"
### 2. Hierarchical Token ID Nesting
Token IDs are **preserved across vocabulary sizes** β a token with ID 1877 in the 4K vocabulary has the **same ID** in all larger vocabularies:
```python
# Example: "of the" has the same token ID across ALL vocabulary sizes
text = "of the"
tok4k.encode(text).ids # [1877]
tok8k.encode(text).ids # [1877]
tok16k.encode(text).ids # [1877]
tok32k.encode(text).ids # [1877]
tok64k.encode(text).ids # [1877]
tok128k.encode(text).ids # [1877]
# Special tokens are identical across all sizes
tok4k.encode("<|start|>").ids # [0]
tok4k.encode("<|end|>").ids # [1]
tok4k.encode("<|pad|>").ids # [2]
```
This enables:
- **Vocabulary expansion during training**: Start with 4K vocab, expand to 8K β 16K β 32K
- **Embedding transfer**: Initialize larger vocabulary models from smaller ones
- **Controlled ablation studies**: Isolate the effect of vocabulary size
### 3. Special Tokens
All tokenizers include 7 special tokens with consistent IDs:
| Token | ID | Purpose |
|-------|---:|---------|
| `<\|start\|>` | 0 | Start of sequence (GPT-style) |
| `<\|end\|>` | 1 | End of sequence |
| `<\|pad\|>` | 2 | Padding token |
| `<\|unk\|>` | 3 | Unknown token |
| `<\|cls\|>` | 4 | Classification token (BERT-style) |
| `<\|sep\|>` | 5 | Separator token (BERT-style) |
| `<\|mask\|>` | 6 | Mask token (MLM training) |
### 4. Argument Notation Tokens (Optional)
Some tokenizer variants include 47 additional special tokens (IDs 7-53) for structured reasoning, debate, and argumentation:
#### Claim Type Markers
- `β§` Fact/descriptive claim
- `β` Value/ethical claim
- `β΅` Policy/action claim
- `β¦` Preference/taste claim
#### Belief Strength
- `⬀` Certain true
- `β` Strongly believe true
- `β` Lean true
- `β` Undecided
- `β` Lean false
- `β` Certain false
#### Value/Attitude
- `β¬` Approve/good
- `β¬` Disapprove/bad
- `β` Mixed
- `β` Neutral
#### Structural Markers
- `β΄` Therefore
- `β΅` Because
- `β` And
- `β` Or
- `β·` Equivalent
- `βΆ` Supports
- `β` Undercuts
- `β’` Explains
- `βΊ` Mutual support
- `β’` Evidence marker
#### Evidence Sources
- `π` Observation
- `π§ͺ` Experiment
- `π` Data/statistics
- `π` Theory/literature
- `π£` Testimony
- `π€` Intuition
- `β
` Strong evidence
- `β` Weak evidence
#### Meta-Discourse
- `β ` Warning/objection
- `β` Emphasis
- `β` Question
- `β»` Revision
- `β` Reframe
#### Agent Markers
- `Β«` Open agent quote
- `Β»` Close agent quote
#### Numbered Markers
- `β ` `β‘` `β’` `β£` `β€` `β₯` `β¦` `β§` `β¨` `β©` Circled numbers 1-10
These tokens enable models to represent structured arguments, track evidence strength, and model multi-agent debates with explicit reasoning chains.
## Usage
### Quick Start
```python
from transformers import PreTrainedTokenizerFast
# Load tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("alea-institute/kl3m-multi-word-001-32k")
# Tokenize text
text = "The Supreme Court held that the defendant violated due process."
tokens = tokenizer.tokenize(text)
ids = tokenizer.encode(text)
print(f"Tokens: {tokens}")
print(f"Token IDs: {ids}")
```
### Using with π€ Tokenizers Library
```python
from tokenizers import Tokenizer
# Load tokenizer
tokenizer = Tokenizer.from_pretrained("alea-institute/kl3m-multi-word-001-32k")
# Encode text
encoding = tokenizer.encode("in accordance with the United States Code")
print(f"Tokens: {encoding.tokens}")
print(f"IDs: {encoding.ids}")
```
### Configuration for Training
```python
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast.from_pretrained("alea-institute/kl3m-multi-word-001-32k")
# Configure special tokens for your model
tokenizer.pad_token = "<|pad|>"
tokenizer.eos_token = "<|end|>"
tokenizer.bos_token = "<|start|>"
tokenizer.unk_token = "<|unk|>"
tokenizer.cls_token = "<|cls|>" # For BERT-style models
tokenizer.sep_token = "<|sep|>" # For BERT-style models
tokenizer.mask_token = "<|mask|>" # For masked language modeling
```
## Training Details
### Training Corpus
- **Source**: KL3M (Kelvin Legal Large Language Model) dataset
- **Size**: ~44.2 GB (44,168,540,153 bytes)
- **Content**: 1,018,355,750 lines, 5,997,814,602 words
- **Domain**: Legal text (court opinions, contracts, statutes, legal documents)
- **License**: Copyright-clean corpus from the ALEA Institute
### Training Method
Trained using the `bbpe` (Binary Byte Pair Encoding) Rust crate with multi-word optimization:
```bash
zcat /nas4/data/kl3m/kl3m-bbpe-sample.txt.gz | \
bbpe train -v - \
--max-entropy 7.0 \
--preprocessor unicode-whitespace \
--preprocessor-probability 0.1 \
--vocab-size 131072 \
--family-size 65536 --family-size 32768 --family-size 16384 \
--family-size 8192 --family-size 4096 \
--family-template tokenizer-{size}.json \
--output tokenizer-131072.json
```
Parameters:
- `max-entropy 7.0`: Entropy threshold balancing multi-word phrases with common tokens
- `family-size`: Creates nested vocabulary families ensuring ID consistency
- `preprocessor unicode-whitespace`: Whitespace normalization
## Use Cases
### 1. Legal Language Models
Train domain-specific language models optimized for legal text:
```python
from transformers import AutoModelForCausalLM, PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast.from_pretrained("alea-institute/kl3m-multi-word-001-32k")
model = AutoModelForCausalLM.from_pretrained("your-legal-model")
# The model will efficiently process legal terminology
text = "The Court held that the statute of limitations had expired."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
```
### 2. Vocabulary Ablation Studies
Compare model performance across vocabulary sizes:
```python
# Train models with different vocabulary sizes
for vocab_size in ["4k", "8k", "16k", "32k", "64k", "128k"]:
tokenizer = PreTrainedTokenizerFast.from_pretrained(
f"alea-institute/kl3m-multi-word-001-{vocab_size}"
)
# Train model and compare convergence, perplexity, downstream performance
```
### 3. Curriculum Learning with Vocabulary Expansion
Leverage hierarchical nesting for progressive vocabulary growth:
```python
# Stage 1: Train with 4K vocabulary
tokenizer_4k = PreTrainedTokenizerFast.from_pretrained("alea-institute/kl3m-multi-word-001-4k")
# ... train model ...
# Stage 2: Expand to 16K vocabulary (embeddings for IDs 0-4095 are identical!)
tokenizer_16k = PreTrainedTokenizerFast.from_pretrained("alea-institute/kl3m-multi-word-001-16k")
# ... expand model embeddings and continue training ...
```
## Research Applications
These tokenizers enable research into:
1. **Vocabulary Size Effects**: How does vocabulary size affect convergence speed, final perplexity, and downstream task performance?
2. **Domain-Specific Tokenization**: Do legal domain tokenizers outperform general-purpose tokenizers (GPT-4, LLaMA) on legal tasks?
3. **Multi-Word Phrase Modeling**: Does capturing legal phrases as single tokens improve legal reasoning and understanding?
4. **Hierarchical Curriculum Learning**: Can progressive vocabulary expansion improve training efficiency or final performance?
5. **Transfer Learning**: Can models trained on smaller vocabularies transfer knowledge to larger vocabularies?
## Citation
If you use these tokenizers in your research, please cite:
```bibtex
@misc{kl3m-multi-word-tokenizers-2025,
title={KL3M Multi-Word Tokenizers: Hierarchically Nested BPE for Legal Domain Language Modeling},
author={ALEA Institute},
year={2025},
url={https://huggingface.co/alea-institute/kl3m-multi-word-001-32k}
}
```
Also consider citing the KL3M dataset:
```bibtex
@article{kl3m-data-2025,
title={The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models},
author={Bommarito, Michael and others},
journal={arXiv preprint arXiv:2504.07854},
year={2025}
}
```
## License
These tokenizers are released under the MIT License. The training corpus (KL3M dataset) is copyright-clean and permissively licensed.
## Links
- **ALEA Institute**: https://aleainstitute.ai/
- **KL3M Project**: https://aleainstitute.ai/work/kl3m/
- **KL3M Dataset Paper**: https://arxiv.org/html/2504.07854
- **Research Repository**: https://github.com/alea-institute/multi-word-tokenization
## Acknowledgments
These tokenizers were created as part of research into vocabulary size effects on legal language model performance. The KL3M dataset and tokenizers are stewarded by the ALEA Institute for public benefit.
---
**Version**: 001
**Created**: November 2025
**Vocabulary Size**: 32,768 tokens
**Domain**: Legal text (with general-purpose capability)
|