Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: numpy
|
| 3 |
+
tags:
|
| 4 |
+
- Taxi-v3
|
| 5 |
+
- reinforcement-learning
|
| 6 |
+
- q-learning
|
| 7 |
+
- custom-implementation
|
| 8 |
+
model-index:
|
| 9 |
+
- name: Q-Learning
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: Taxi-v3
|
| 16 |
+
type: Taxi-v3
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
name: mean_reward
|
| 20 |
+
value: 7.92 +/- 2.60
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# 🚖 Q-Learning Agent for Taxi-v3
|
| 25 |
+
|
| 26 |
+
This is a trained **Q-Learning agent** for the **Taxi-v3** environment using a **tabular approach**.
|
| 27 |
+
|
| 28 |
+
## Developer
|
| 29 |
+
**Vishand S (@Vishand03)**
|
| 30 |
+
|
| 31 |
+
## Frameworks
|
| 32 |
+
- Python
|
| 33 |
+
- NumPy
|
| 34 |
+
- Gymnasium
|
| 35 |
+
|
| 36 |
+
## Training Details
|
| 37 |
+
- Algorithm: Q-Learning
|
| 38 |
+
- Episodes: 2,000,000
|
| 39 |
+
- Max Steps per Episode: 200
|
| 40 |
+
- Learning rate (α): 0.1
|
| 41 |
+
- Discount factor (γ): 0.99
|
| 42 |
+
- Exploration: Epsilon-greedy
|
| 43 |
+
- Epsilon decay: 0.0005
|
| 44 |
+
- Mean Reward: ~7.92 ± 2.60
|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
## 🛠 Usage
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
import gymnasium as gym
|
| 52 |
+
import pickle
|
| 53 |
+
from huggingface_hub import hf_hub_download
|
| 54 |
+
|
| 55 |
+
# -------------------------
|
| 56 |
+
# Load pretrained model
|
| 57 |
+
# -------------------------
|
| 58 |
+
model_file = hf_hub_download("Vishand03/q-Taxi-v3", "q-learning.pkl")
|
| 59 |
+
with open(model_file, "rb") as f:
|
| 60 |
+
model = pickle.load(f)
|
| 61 |
+
|
| 62 |
+
env = gym.make(model["env_id"])
|
| 63 |
+
|
| 64 |
+
# -------------------------
|
| 65 |
+
# Evaluate agent
|
| 66 |
+
# -------------------------
|
| 67 |
+
def greedy_policy(Qtable, state):
|
| 68 |
+
return max(range(len(Qtable[state])), key=lambda a: Qtable[state][a])
|
| 69 |
+
|
| 70 |
+
total_rewards = []
|
| 71 |
+
for _ in range(model["n_eval_episodes"]):
|
| 72 |
+
state, _ = env.reset()
|
| 73 |
+
done = False
|
| 74 |
+
episode_reward = 0
|
| 75 |
+
while not done:
|
| 76 |
+
action = greedy_policy(model["qtable"], state)
|
| 77 |
+
state, reward, terminated, truncated, _ = env.step(action)
|
| 78 |
+
episode_reward += reward
|
| 79 |
+
done = terminated or truncated
|
| 80 |
+
total_rewards.append(episode_reward)
|
| 81 |
+
|
| 82 |
+
mean_reward = sum(total_rewards) / len(total_rewards)
|
| 83 |
+
print(f"Mean Reward: {mean_reward:.2f}")
|