Valentin Boussot
commited on
Commit
·
2d34814
1
Parent(s):
6ec9956
Add fast inference
Browse files- Build.py +0 -2
- Model.py +30 -5
- Prediction_CT.yml +3 -4
- Prediction_CT_Fast.yml +97 -0
- Prediction_MR.yml +4 -4
- Prediction_MR_Fast.yml +91 -0
Build.py
CHANGED
|
@@ -34,8 +34,6 @@ def convert_torchScript_full(model_name: str, model: torch.nn.Module, type: int,
|
|
| 34 |
model.load_state_dict(tmp)
|
| 35 |
torch.save({"Model" : {"Unet_TS" : tmp}}, f"{model_name}.pt")
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
def download(url: str) -> dict[str, torch.Tensor]:
|
| 40 |
with open(url.split("/")[-1], 'wb') as f:
|
| 41 |
with requests.get(url, stream=True) as r:
|
|
|
|
| 34 |
model.load_state_dict(tmp)
|
| 35 |
torch.save({"Model" : {"Unet_TS" : tmp}}, f"{model_name}.pt")
|
| 36 |
|
|
|
|
|
|
|
| 37 |
def download(url: str) -> dict[str, torch.Tensor]:
|
| 38 |
with open(url.split("/")[-1], 'wb') as f:
|
| 39 |
with requests.get(url, stream=True) as r:
|
Model.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
from konfai.network import network, blocks
|
|
|
|
| 3 |
|
| 4 |
class ConvBlock(network.ModuleArgsDict):
|
| 5 |
def __init__(self, in_channels : int, out_channels : int, stride: int = 1 ) -> None:
|
|
@@ -15,15 +16,16 @@ class UNetHead(network.ModuleArgsDict):
|
|
| 15 |
def __init__(self, in_channels: int, nb_class: int) -> None:
|
| 16 |
super().__init__()
|
| 17 |
self.add_module("Conv", torch.nn.Conv3d(in_channels = in_channels, out_channels = nb_class, kernel_size = 1, stride = 1, padding = 0))
|
|
|
|
| 18 |
|
| 19 |
class UNetBlock(network.ModuleArgsDict):
|
| 20 |
|
| 21 |
-
def __init__(self, channels,
|
| 22 |
super().__init__()
|
| 23 |
self.add_module("DownConvBlock", ConvBlock(in_channels=channels[0], out_channels=channels[1], stride= ((1,2,2) if mri and i > 4 else 2) if i>0 else 1))
|
| 24 |
|
| 25 |
if len(channels) > 2:
|
| 26 |
-
self.add_module("UNetBlock", UNetBlock(channels[1:],
|
| 27 |
self.add_module("UpConvBlock", ConvBlock(in_channels=channels[1]*2, out_channels=channels[1]))
|
| 28 |
|
| 29 |
if i > 0:
|
|
@@ -39,7 +41,6 @@ class Unet_TS(network.Network):
|
|
| 39 |
},
|
| 40 |
outputs_criterions: dict[str, network.TargetCriterionsLoader] = {"default": network.TargetCriterionsLoader()},
|
| 41 |
channels = [1, 32, 64, 128, 320, 320],
|
| 42 |
-
nb_class: int = 41,
|
| 43 |
mri: bool = False) -> None:
|
| 44 |
super().__init__(
|
| 45 |
in_channels=channels[0],
|
|
@@ -49,5 +50,29 @@ class Unet_TS(network.Network):
|
|
| 49 |
patch=None,
|
| 50 |
dim=3,
|
| 51 |
)
|
| 52 |
-
self.add_module("UNetBlock", UNetBlock(channels,
|
| 53 |
-
self.add_module("Head", UNetHead(channels[1],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from konfai.network import network, blocks
|
| 3 |
+
from konfai.predictor import Reduction
|
| 4 |
|
| 5 |
class ConvBlock(network.ModuleArgsDict):
|
| 6 |
def __init__(self, in_channels : int, out_channels : int, stride: int = 1 ) -> None:
|
|
|
|
| 16 |
def __init__(self, in_channels: int, nb_class: int) -> None:
|
| 17 |
super().__init__()
|
| 18 |
self.add_module("Conv", torch.nn.Conv3d(in_channels = in_channels, out_channels = nb_class, kernel_size = 1, stride = 1, padding = 0))
|
| 19 |
+
self.add_module("Softmax", torch.nn.Softmax(dim=1))
|
| 20 |
|
| 21 |
class UNetBlock(network.ModuleArgsDict):
|
| 22 |
|
| 23 |
+
def __init__(self, channels, mri: bool, i : int = 0) -> None:
|
| 24 |
super().__init__()
|
| 25 |
self.add_module("DownConvBlock", ConvBlock(in_channels=channels[0], out_channels=channels[1], stride= ((1,2,2) if mri and i > 4 else 2) if i>0 else 1))
|
| 26 |
|
| 27 |
if len(channels) > 2:
|
| 28 |
+
self.add_module("UNetBlock", UNetBlock(channels[1:], mri, i+1))
|
| 29 |
self.add_module("UpConvBlock", ConvBlock(in_channels=channels[1]*2, out_channels=channels[1]))
|
| 30 |
|
| 31 |
if i > 0:
|
|
|
|
| 41 |
},
|
| 42 |
outputs_criterions: dict[str, network.TargetCriterionsLoader] = {"default": network.TargetCriterionsLoader()},
|
| 43 |
channels = [1, 32, 64, 128, 320, 320],
|
|
|
|
| 44 |
mri: bool = False) -> None:
|
| 45 |
super().__init__(
|
| 46 |
in_channels=channels[0],
|
|
|
|
| 50 |
patch=None,
|
| 51 |
dim=3,
|
| 52 |
)
|
| 53 |
+
self.add_module("UNetBlock", UNetBlock(channels, mri))
|
| 54 |
+
self.add_module("Head", UNetHead(channels[1], 42))
|
| 55 |
+
|
| 56 |
+
def load(
|
| 57 |
+
self,
|
| 58 |
+
state_dict: dict[str, dict[str, torch.Tensor] | int],
|
| 59 |
+
init: bool = True,
|
| 60 |
+
ema: bool = False,
|
| 61 |
+
):
|
| 62 |
+
nb_class, in_channels = state_dict["Model"]["Unet_TS"]["Head.Conv.weight"].shape[:2]
|
| 63 |
+
self["Head"].add_module("Conv", torch.nn.Conv3d(in_channels = in_channels, out_channels = nb_class, kernel_size = 1, stride = 1, padding = 0))
|
| 64 |
+
super().load(state_dict, init, ema)
|
| 65 |
+
|
| 66 |
+
class Combine(Reduction):
|
| 67 |
+
|
| 68 |
+
def __init__(self):
|
| 69 |
+
pass
|
| 70 |
+
|
| 71 |
+
def __call__(self, tensors: list[torch.Tensor]) -> torch.Tensor:
|
| 72 |
+
fg_all = torch.cat([p[:, 1:, ...] for p in tensors], dim=1)
|
| 73 |
+
sum_fg = fg_all.sum(dim=1, keepdim=True)
|
| 74 |
+
bg = (1.0 - sum_fg).clamp(min=1e-6)
|
| 75 |
+
|
| 76 |
+
probs = torch.cat([bg, fg_all], dim=1)
|
| 77 |
+
|
| 78 |
+
return probs / probs.sum(dim=1, keepdim=True)
|
Prediction_CT.yml
CHANGED
|
@@ -11,7 +11,6 @@ Predictor:
|
|
| 11 |
- 256
|
| 12 |
- 320
|
| 13 |
- 320
|
| 14 |
-
nb_class: 25
|
| 15 |
mri: false
|
| 16 |
Dataset:
|
| 17 |
groups_src:
|
|
@@ -85,15 +84,15 @@ Predictor:
|
|
| 85 |
dtype: uint8
|
| 86 |
inverse: true
|
| 87 |
dataset_filename: Dataset:mha
|
| 88 |
-
group:
|
| 89 |
same_as_group: Volume:Volume
|
| 90 |
patch_combine: Cosinus
|
| 91 |
inverse_transform: true
|
| 92 |
reduction: Mean
|
| 93 |
-
train_name:
|
| 94 |
manual_seed: 32
|
| 95 |
gpu_checkpoints: None
|
| 96 |
images_log: None
|
| 97 |
-
combine:
|
| 98 |
autocast: false
|
| 99 |
data_log: None
|
|
|
|
| 11 |
- 256
|
| 12 |
- 320
|
| 13 |
- 320
|
|
|
|
| 14 |
mri: false
|
| 15 |
Dataset:
|
| 16 |
groups_src:
|
|
|
|
| 84 |
dtype: uint8
|
| 85 |
inverse: true
|
| 86 |
dataset_filename: Dataset:mha
|
| 87 |
+
group: Seg
|
| 88 |
same_as_group: Volume:Volume
|
| 89 |
patch_combine: Cosinus
|
| 90 |
inverse_transform: true
|
| 91 |
reduction: Mean
|
| 92 |
+
train_name: TotalSegmentator
|
| 93 |
manual_seed: 32
|
| 94 |
gpu_checkpoints: None
|
| 95 |
images_log: None
|
| 96 |
+
combine: Model:Combine
|
| 97 |
autocast: false
|
| 98 |
data_log: None
|
Prediction_CT_Fast.yml
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Predictor:
|
| 2 |
+
Model:
|
| 3 |
+
classpath: Model:Unet_TS
|
| 4 |
+
Unet_TS:
|
| 5 |
+
outputs_criterions: None
|
| 6 |
+
channels:
|
| 7 |
+
- 1
|
| 8 |
+
- 32
|
| 9 |
+
- 64
|
| 10 |
+
- 128
|
| 11 |
+
- 256
|
| 12 |
+
- 320
|
| 13 |
+
mri: false
|
| 14 |
+
Dataset:
|
| 15 |
+
groups_src:
|
| 16 |
+
Volume:
|
| 17 |
+
groups_dest:
|
| 18 |
+
Volume:
|
| 19 |
+
transforms:
|
| 20 |
+
TensorCast:
|
| 21 |
+
dtype: float32
|
| 22 |
+
inverse: false
|
| 23 |
+
Canonical:
|
| 24 |
+
inverse: true
|
| 25 |
+
Clip:
|
| 26 |
+
min_value: -1024
|
| 27 |
+
max_value: 276
|
| 28 |
+
save_clip_min: false
|
| 29 |
+
save_clip_max: false
|
| 30 |
+
mask: None
|
| 31 |
+
Standardize:
|
| 32 |
+
lazy: false
|
| 33 |
+
mean: -370.00039267657144
|
| 34 |
+
std: 436.5998675471528
|
| 35 |
+
mask: None
|
| 36 |
+
inverse: true
|
| 37 |
+
ResampleToResolution:
|
| 38 |
+
spacing:
|
| 39 |
+
- 3
|
| 40 |
+
- 3
|
| 41 |
+
- 3
|
| 42 |
+
inverse: true
|
| 43 |
+
Padding:
|
| 44 |
+
padding:
|
| 45 |
+
- 32
|
| 46 |
+
- 32
|
| 47 |
+
- 32
|
| 48 |
+
- 32
|
| 49 |
+
- 32
|
| 50 |
+
- 32
|
| 51 |
+
mode: constant
|
| 52 |
+
inverse: true
|
| 53 |
+
patch_transforms: None
|
| 54 |
+
is_input: true
|
| 55 |
+
augmentations: None
|
| 56 |
+
Patch:
|
| 57 |
+
patch_size:
|
| 58 |
+
- 96
|
| 59 |
+
- 128
|
| 60 |
+
- 160
|
| 61 |
+
overlap: 32
|
| 62 |
+
mask: None
|
| 63 |
+
pad_value: 0
|
| 64 |
+
extend_slice: 0
|
| 65 |
+
subset: None
|
| 66 |
+
filter: None
|
| 67 |
+
dataset_filenames:
|
| 68 |
+
- ./Dataset/:nii.gz
|
| 69 |
+
use_cache: false
|
| 70 |
+
batch_size: 1
|
| 71 |
+
outputs_dataset:
|
| 72 |
+
Head:Conv:
|
| 73 |
+
OutputDataset:
|
| 74 |
+
name_class: OutSameAsGroupDataset
|
| 75 |
+
before_reduction_transforms: None
|
| 76 |
+
after_reduction_transforms: None
|
| 77 |
+
final_transforms:
|
| 78 |
+
Softmax:
|
| 79 |
+
dim: 0
|
| 80 |
+
Argmax:
|
| 81 |
+
dim: 0
|
| 82 |
+
TensorCast:
|
| 83 |
+
dtype: uint8
|
| 84 |
+
inverse: true
|
| 85 |
+
dataset_filename: Dataset:mha
|
| 86 |
+
group: Seg
|
| 87 |
+
same_as_group: Volume:Volume
|
| 88 |
+
patch_combine: Cosinus
|
| 89 |
+
inverse_transform: true
|
| 90 |
+
reduction: Mean
|
| 91 |
+
train_name: TotalSegmentator
|
| 92 |
+
manual_seed: 32
|
| 93 |
+
gpu_checkpoints: None
|
| 94 |
+
images_log: None
|
| 95 |
+
combine: Model:Combine
|
| 96 |
+
autocast: false
|
| 97 |
+
data_log: None
|
Prediction_MR.yml
CHANGED
|
@@ -11,7 +11,7 @@ Predictor:
|
|
| 11 |
- 256
|
| 12 |
- 320
|
| 13 |
- 320
|
| 14 |
-
|
| 15 |
Dataset:
|
| 16 |
groups_src:
|
| 17 |
Volume:
|
|
@@ -78,15 +78,15 @@ Predictor:
|
|
| 78 |
dtype: uint8
|
| 79 |
inverse: true
|
| 80 |
dataset_filename: Dataset:mha
|
| 81 |
-
group:
|
| 82 |
same_as_group: Volume:Volume
|
| 83 |
patch_combine: Cosinus
|
| 84 |
inverse_transform: true
|
| 85 |
reduction: Mean
|
| 86 |
-
train_name:
|
| 87 |
manual_seed: 32
|
| 88 |
gpu_checkpoints: None
|
| 89 |
images_log: None
|
| 90 |
-
combine:
|
| 91 |
autocast: false
|
| 92 |
data_log: None
|
|
|
|
| 11 |
- 256
|
| 12 |
- 320
|
| 13 |
- 320
|
| 14 |
+
mri: true
|
| 15 |
Dataset:
|
| 16 |
groups_src:
|
| 17 |
Volume:
|
|
|
|
| 78 |
dtype: uint8
|
| 79 |
inverse: true
|
| 80 |
dataset_filename: Dataset:mha
|
| 81 |
+
group: Seg
|
| 82 |
same_as_group: Volume:Volume
|
| 83 |
patch_combine: Cosinus
|
| 84 |
inverse_transform: true
|
| 85 |
reduction: Mean
|
| 86 |
+
train_name: TotalSegmentator
|
| 87 |
manual_seed: 32
|
| 88 |
gpu_checkpoints: None
|
| 89 |
images_log: None
|
| 90 |
+
combine: Model:Combine
|
| 91 |
autocast: false
|
| 92 |
data_log: None
|
Prediction_MR_Fast.yml
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Predictor:
|
| 2 |
+
Model:
|
| 3 |
+
classpath: Model:Unet_TS
|
| 4 |
+
Unet_TS:
|
| 5 |
+
outputs_criterions: None
|
| 6 |
+
channels:
|
| 7 |
+
- 1
|
| 8 |
+
- 32
|
| 9 |
+
- 64
|
| 10 |
+
- 128
|
| 11 |
+
- 256
|
| 12 |
+
- 320
|
| 13 |
+
mri: true
|
| 14 |
+
Dataset:
|
| 15 |
+
groups_src:
|
| 16 |
+
Volume:
|
| 17 |
+
groups_dest:
|
| 18 |
+
Volume:
|
| 19 |
+
transforms:
|
| 20 |
+
TensorCast:
|
| 21 |
+
dtype: float32
|
| 22 |
+
inverse: false
|
| 23 |
+
Canonical:
|
| 24 |
+
inverse: true
|
| 25 |
+
Standardize:
|
| 26 |
+
lazy: false
|
| 27 |
+
mean: None
|
| 28 |
+
std: None
|
| 29 |
+
mask: None
|
| 30 |
+
inverse: false
|
| 31 |
+
ResampleToResolution:
|
| 32 |
+
spacing:
|
| 33 |
+
- 3
|
| 34 |
+
- 3
|
| 35 |
+
- 3
|
| 36 |
+
inverse: true
|
| 37 |
+
Padding:
|
| 38 |
+
padding:
|
| 39 |
+
- 32
|
| 40 |
+
- 32
|
| 41 |
+
- 32
|
| 42 |
+
- 32
|
| 43 |
+
- 32
|
| 44 |
+
- 32
|
| 45 |
+
mode: constant
|
| 46 |
+
inverse: true
|
| 47 |
+
patch_transforms: None
|
| 48 |
+
is_input: true
|
| 49 |
+
augmentations: None
|
| 50 |
+
Patch:
|
| 51 |
+
patch_size:
|
| 52 |
+
- 96
|
| 53 |
+
- 128
|
| 54 |
+
- 160
|
| 55 |
+
overlap: 32
|
| 56 |
+
mask: None
|
| 57 |
+
pad_value: 0
|
| 58 |
+
extend_slice: 0
|
| 59 |
+
subset: None
|
| 60 |
+
filter: None
|
| 61 |
+
dataset_filenames:
|
| 62 |
+
- ./Dataset/:nii.gz
|
| 63 |
+
use_cache: false
|
| 64 |
+
batch_size: 1
|
| 65 |
+
outputs_dataset:
|
| 66 |
+
Head:Conv:
|
| 67 |
+
OutputDataset:
|
| 68 |
+
name_class: OutSameAsGroupDataset
|
| 69 |
+
before_reduction_transforms: None
|
| 70 |
+
after_reduction_transforms: None
|
| 71 |
+
final_transforms:
|
| 72 |
+
Softmax:
|
| 73 |
+
dim: 0
|
| 74 |
+
Argmax:
|
| 75 |
+
dim: 0
|
| 76 |
+
TensorCast:
|
| 77 |
+
dtype: uint8
|
| 78 |
+
inverse: true
|
| 79 |
+
dataset_filename: Dataset:mha
|
| 80 |
+
group: Seg
|
| 81 |
+
same_as_group: Volume:Volume
|
| 82 |
+
patch_combine: Cosinus
|
| 83 |
+
inverse_transform: true
|
| 84 |
+
reduction: Mean
|
| 85 |
+
train_name: TotalSegmentator
|
| 86 |
+
manual_seed: 32
|
| 87 |
+
gpu_checkpoints: None
|
| 88 |
+
images_log: None
|
| 89 |
+
combine: Model:Combine
|
| 90 |
+
autocast: false
|
| 91 |
+
data_log: None
|