File size: 3,459 Bytes
95de230 855289d 95de230 855289d 95de230 855289d 95de230 310c531 5b6f07a 95de230 56bddbb 95de230 5b6f07a 2c1871e b506158 2c1871e 5b6f07a 2c1871e 5b6f07a 95de230 b506158 95de230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: Wan-AI/Wan2.2-I2V-A14B
tags:
- image-to-video
- diffusion
- video-generation
- turbodiffusion
- wan2.2
pipeline_tag: image-to-video
---
<p align="center">
<img src="assets/TurboDiffusion_Logo.png" width="300"/>
<p>
# TurboWan2.2-I2V-A14B-720P
- This HuggingFace repo contains the `TurboWan2.2-I2V-A14B-720P` model.
- For RTX 5090 or similar GPUs, please use the quantized versions (`TurboWan2.2-I2V-A14B-high-720P-quant` and `TurboWan2.2-I2V-A14B-low-720P-quant`). For other GPUs with a bigger GPU memory than 40GB, we recommend using (`TurboWan2.2-I2V-A14B-high-720P` and `TurboWan2.2-I2V-A14B-low-720P`).
- For usage instructions, please see **https://github.com/thu-ml/TurboDiffusion**
- Paper: [TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times](https://arxiv.org/pdf/2512.16093)
# Citation
```
@article{zhang2025turbodiffusion,
title={TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times},
author={Zhang, Jintao and Zheng, Kaiwen and Jiang, Kai and Wang, Haoxu and Stoica, Ion and Gonzalez, Joseph E and Chen, Jianfei and Zhu, Jun},
journal={arXiv preprint arXiv:2512.16093},
year={2025}
}
@software{turbodiffusion2025,
title={TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times},
author={The TurboDiffusion Team},
url={https://github.com/thu-ml/TurboDiffusion},
year={2025}
}
@inproceedings{zhang2025sageattention,
title={SageAttention: Accurate 8-Bit Attention for Plug-and-play Inference Acceleration},
author={Zhang, Jintao and Wei, Jia and Zhang, Pengle and Zhu, Jun and Chen, Jianfei},
booktitle={International Conference on Learning Representations (ICLR)},
year={2025}
}
@article{zhang2025sla,
title={SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention},
author={Zhang, Jintao and Wang, Haoxu and Jiang, Kai and Yang, Shuo and Zheng, Kaiwen and Xi, Haocheng and Wang, Ziteng and Zhu, Hongzhou and Zhao, Min and Stoica, Ion and others},
journal={arXiv preprint arXiv:2509.24006},
year={2025}
}
@article{zheng2025rcm,
title={Large Scale Diffusion Distillation via Score-Regularized Continuous-Time Consistency},
author={Zheng, Kaiwen and Wang, Yuji and Ma, Qianli and Chen, Huayu and Zhang, Jintao and Balaji, Yogesh and Chen, Jianfei and Liu, Ming-Yu and Zhu, Jun and Zhang, Qinsheng},
journal={arXiv preprint arXiv:2510.08431},
year={2025}
}
@inproceedings{zhang2024sageattention2,
title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization},
author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei},
booktitle={International Conference on Machine Learning (ICML)},
year={2025}
}
@article{zhang2025sageattention2++,
title={Sageattention2++: A more efficient implementation of sageattention2},
author={Zhang, Jintao and Xu, Xiaoming and Wei, Jia and Huang, Haofeng and Zhang, Pengle and Xiang, Chendong and Zhu, Jun and Chen, Jianfei},
journal={arXiv preprint arXiv:2505.21136},
year={2025}
}
@article{zhang2025sageattention3,
title={SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training},
author={Zhang, Jintao and Wei, Jia and Zhang, Pengle and Xu, Xiaoming and Huang, Haofeng and Wang, Haoxu and Jiang, Kai and Zhu, Jun and Chen, Jianfei},
journal={arXiv preprint arXiv:2505.11594},
year={2025}
}
```
|