nm-research commited on
Commit
aac8ed8
·
verified ·
1 Parent(s): 3a9e40c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +266 -0
README.md CHANGED
@@ -277,3 +277,269 @@ evalplus.evaluate \
277
  </table>
278
 
279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
  </table>
278
 
279
 
280
+
281
+ ## Inference Performance
282
+
283
+
284
+ This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
285
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
286
+
287
+ <details>
288
+ <summary>Benchmarking Command</summary>
289
+
290
+ ```
291
+ guidellm --model neuralmagic/granite-3.1-8b-base-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
292
+ ```
293
+
294
+ </details>
295
+
296
+ ### Single-stream performance (measured with vLLM version 0.6.6.post1)
297
+ <table>
298
+ <tr>
299
+ <td></td>
300
+ <td></td>
301
+ <td></td>
302
+ <th style="text-align: center;" colspan="7" >Latency (s)</th>
303
+ </tr>
304
+ <tr>
305
+ <th>GPU class</th>
306
+ <th>Model</th>
307
+ <th>Speedup</th>
308
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
309
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
310
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
311
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
312
+ <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
313
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
314
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
315
+ </tr>
316
+ <tr>
317
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
318
+ <td>granite-3.1-8b-base</td>
319
+ <td></td>
320
+ <td>28.3</td>
321
+ <td>3.7</td>
322
+ <td>28.8</td>
323
+ <td>3.8</td>
324
+ <td>3.6</td>
325
+ <td>7.2</td>
326
+ <td>15.7</td>
327
+ </tr>
328
+ <tr>
329
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
330
+ <td>1.60</td>
331
+ <td>17.7</td>
332
+ <td>2.3</td>
333
+ <td>18.0</td>
334
+ <td>2.4</td>
335
+ <td>2.2</td>
336
+ <td>4.5</td>
337
+ <td>10.0</td>
338
+ </tr>
339
+ <tr>
340
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
341
+ <td>2.61</td>
342
+ <td>10.3</td>
343
+ <td>1.5</td>
344
+ <td>10.7</td>
345
+ <td>1.5</td>
346
+ <td>1.3</td>
347
+ <td>2.7</td>
348
+ <td>6.6</td>
349
+ </tr>
350
+ <tr>
351
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
352
+ <td>granite-3.1-8b-base</td>
353
+ <td></td>
354
+ <td>25.8</td>
355
+ <td>3.4</td>
356
+ <td>26.2</td>
357
+ <td>3.4</td>
358
+ <td>3.3</td>
359
+ <td>6.5</td>
360
+ <td>14.2</td>
361
+ </tr>
362
+ <tr>
363
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
364
+ <td>1.50</td>
365
+ <td>17.4</td>
366
+ <td>2.3</td>
367
+ <td>16.9</td>
368
+ <td>2.2</td>
369
+ <td>2.2</td>
370
+ <td>4.4</td>
371
+ <td>9.8</td>
372
+ </tr>
373
+ <tr>
374
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
375
+ <td>2.48</td>
376
+ <td>10.0</td>
377
+ <td>1.4</td>
378
+ <td>10.4</td>
379
+ <td>1.5</td>
380
+ <td>1.3</td>
381
+ <td>2.5</td>
382
+ <td>6.2</td>
383
+ </tr>
384
+ <tr>
385
+ <td style="vertical-align: middle;" rowspan="3" >A100</td>
386
+ <td>granite-3.1-8b-base</td>
387
+ <td></td>
388
+ <td>13.6</td>
389
+ <td>1.8</td>
390
+ <td>13.7</td>
391
+ <td>1.8</td>
392
+ <td>1.7</td>
393
+ <td>3.4</td>
394
+ <td>7.3</td>
395
+ </tr>
396
+ <tr>
397
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
398
+ <td>1.31</td>
399
+ <td>10.4</td>
400
+ <td>1.3</td>
401
+ <td>10.5</td>
402
+ <td>1.4</td>
403
+ <td>1.3</td>
404
+ <td>2.6</td>
405
+ <td>5.6</td>
406
+ </tr>
407
+ <tr>
408
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
409
+ <td>1.80</td>
410
+ <td>7.3</td>
411
+ <td>1.0</td>
412
+ <td>7.4</td>
413
+ <td>1.0</td>
414
+ <td>0.9</td>
415
+ <td>1.9</td>
416
+ <td>4.3</td>
417
+ </tr>
418
+ </table>
419
+
420
+
421
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
422
+ <table>
423
+ <tr>
424
+ <td></td>
425
+ <td></td>
426
+ <td></td>
427
+ <th style="text-align: center;" colspan="7" >Maximum Throughput (Queries per Second)</th>
428
+ </tr>
429
+ <tr>
430
+ <th>GPU class</th>
431
+ <th>Model</th>
432
+ <th>Speedup</th>
433
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
434
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
435
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
436
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
437
+ <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
438
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
439
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
440
+ </tr>
441
+ <tr>
442
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
443
+ <td>granite-3.1-8b-base</td>
444
+ <td></td>
445
+ <td>0.8</td>
446
+ <td>3.1</td>
447
+ <td>0.4</td>
448
+ <td>2.5</td>
449
+ <td>6.7</td>
450
+ <td>2.7</td>
451
+ <td>0.3</td>
452
+ </tr>
453
+ <tr>
454
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
455
+ <td>1.71</td>
456
+ <td>1.3</td>
457
+ <td>5.2</td>
458
+ <td>0.9</td>
459
+ <td>4.0</td>
460
+ <td>10.5</td>
461
+ <td>4.4</td>
462
+ <td>0.5</td>
463
+ </tr>
464
+ <tr>
465
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
466
+ <td>1.46</td>
467
+ <td>1.3</td>
468
+ <td>3.9</td>
469
+ <td>0.8</td>
470
+ <td>2.9</td>
471
+ <td>8.2</td>
472
+ <td>3.6</td>
473
+ <td>0.5</td>
474
+ </tr>
475
+ <tr>
476
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
477
+ <td>granite-3.1-8b-base</td>
478
+ <td></td>
479
+ <td>1.3</td>
480
+ <td>5.1</td>
481
+ <td>0.9</td>
482
+ <td>4.0</td>
483
+ <td>0.3</td>
484
+ <td>4.3</td>
485
+ <td>0.6</td>
486
+ </tr>
487
+ <tr>
488
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
489
+ <td>1.39</td>
490
+ <td>1.8</td>
491
+ <td>7.0</td>
492
+ <td>1.3</td>
493
+ <td>5.6</td>
494
+ <td>14.0</td>
495
+ <td>6.3</td>
496
+ <td>0.8</td>
497
+ </tr>
498
+ <tr>
499
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
500
+ <td>1.09</td>
501
+ <td>1.9</td>
502
+ <td>4.8</td>
503
+ <td>1.0</td>
504
+ <td>3.8</td>
505
+ <td>10.0</td>
506
+ <td>5.0</td>
507
+ <td>0.6</td>
508
+ </tr>
509
+ <tr>
510
+ <td style="vertical-align: middle;" rowspan="3" >A100</td>
511
+ <td>granite-3.1-8b-base</td>
512
+ <td></td>
513
+ <td>3.1</td>
514
+ <td>10.7</td>
515
+ <td>2.1</td>
516
+ <td>8.5</td>
517
+ <td>20.6</td>
518
+ <td>9.6</td>
519
+ <td>1.4</td>
520
+ </tr>
521
+ <tr>
522
+ <td>granite-3.1-8b-base-quantized.w8a8<br>(this model)</td>
523
+ <td>1.23</td>
524
+ <td>3.8</td>
525
+ <td>14.2</td>
526
+ <td>2.1</td>
527
+ <td>11.4</td>
528
+ <td>25.9</td>
529
+ <td>12.1</td>
530
+ <td>1.7</td>
531
+ </tr>
532
+ <tr>
533
+ <td>granite-3.1-8b-base-quantized.w4a16</td>
534
+ <td>0.96</td>
535
+ <td>3.4</td>
536
+ <td>9.0</td>
537
+ <td>2.6</td>
538
+ <td>7.2</td>
539
+ <td>18.0</td>
540
+ <td>8.8</td>
541
+ <td>1.3</td>
542
+ </tr>
543
+ </table>
544
+
545
+