Update README.md
Browse files
README.md
CHANGED
|
@@ -17,13 +17,13 @@ license_link: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct/resolv
|
|
| 17 |
- **Activation quantization:** FP8
|
| 18 |
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
|
| 19 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 20 |
-
- **Release Date:**
|
| 21 |
-
- **Version:** 1.
|
| 22 |
- **License(s):** [mit](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct/resolve/main/LICENSE)
|
| 23 |
- **Model Developers:** Neural Magic
|
| 24 |
|
| 25 |
-
Quantized version of [Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct).
|
| 26 |
-
It achieves an average score of 73.
|
| 27 |
|
| 28 |
### Model Optimizations
|
| 29 |
|
|
@@ -68,50 +68,94 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
| 68 |
|
| 69 |
## Creation
|
| 70 |
|
| 71 |
-
This model was created by applying [
|
| 72 |
-
|
| 73 |
|
| 74 |
```python
|
|
|
|
| 75 |
from datasets import load_dataset
|
| 76 |
from transformers import AutoTokenizer
|
| 77 |
-
import numpy as np
|
| 78 |
-
import torch
|
| 79 |
-
|
| 80 |
-
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
| 81 |
-
|
| 82 |
-
MODEL_DIR = "microsoft/Phi-3-medium-128k-instruct"
|
| 83 |
-
final_model_dir = MODEL_DIR.split("/")[-1]
|
| 84 |
-
|
| 85 |
-
CONTEXT_LENGTH = 4096
|
| 86 |
-
NUM_SAMPLES = 512
|
| 87 |
-
NUM_REPEATS = 10
|
| 88 |
-
|
| 89 |
-
pretrained_model_dir = MODEL_DIR
|
| 90 |
-
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH)
|
| 91 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 92 |
-
|
| 93 |
-
tokenizer_num_tokens = len(list(tokenizer.get_vocab().values()))
|
| 94 |
-
total_token_samples = NUM_REPEATS * tokenizer_num_tokens
|
| 95 |
-
num_random_samp = -(-total_token_samples // CONTEXT_LENGTH)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
quantize_config = BaseQuantizeConfig(
|
| 103 |
-
quant_method="fp8",
|
| 104 |
-
activation_scheme="static",
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
```
|
| 116 |
|
| 117 |
## Evaluation
|
|
@@ -120,7 +164,7 @@ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-
|
|
| 120 |
```
|
| 121 |
lm_eval \
|
| 122 |
--model vllm \
|
| 123 |
-
--model_args pretrained="neuralmagic/Phi-3-medium-128k-instruct-FP8",dtype=auto,gpu_memory_utilization=0.
|
| 124 |
--tasks openllm \
|
| 125 |
--batch_size auto
|
| 126 |
```
|
|
@@ -142,71 +186,71 @@ lm_eval \
|
|
| 142 |
<tr>
|
| 143 |
<td>MMLU (5-shot)
|
| 144 |
</td>
|
| 145 |
-
<td>
|
| 146 |
</td>
|
| 147 |
-
<td>
|
| 148 |
</td>
|
| 149 |
-
<td>
|
| 150 |
</td>
|
| 151 |
</tr>
|
| 152 |
<tr>
|
| 153 |
<td>ARC Challenge (25-shot)
|
| 154 |
</td>
|
| 155 |
-
<td>
|
| 156 |
</td>
|
| 157 |
-
<td>
|
| 158 |
</td>
|
| 159 |
-
<td>98.
|
| 160 |
</td>
|
| 161 |
</tr>
|
| 162 |
<tr>
|
| 163 |
<td>GSM-8K (5-shot, strict-match)
|
| 164 |
</td>
|
| 165 |
-
<td>84.
|
| 166 |
</td>
|
| 167 |
-
<td>
|
| 168 |
</td>
|
| 169 |
-
<td>
|
| 170 |
</td>
|
| 171 |
</tr>
|
| 172 |
<tr>
|
| 173 |
<td>Hellaswag (10-shot)
|
| 174 |
</td>
|
| 175 |
-
<td>84.
|
| 176 |
</td>
|
| 177 |
-
<td>84.
|
| 178 |
</td>
|
| 179 |
-
<td>99.
|
| 180 |
</td>
|
| 181 |
</tr>
|
| 182 |
<tr>
|
| 183 |
<td>Winogrande (5-shot)
|
| 184 |
</td>
|
| 185 |
-
<td>75.
|
| 186 |
</td>
|
| 187 |
-
<td>74.
|
| 188 |
</td>
|
| 189 |
-
<td>
|
| 190 |
</td>
|
| 191 |
</tr>
|
| 192 |
<tr>
|
| 193 |
<td>TruthfulQA (0-shot)
|
| 194 |
</td>
|
| 195 |
-
<td>
|
| 196 |
</td>
|
| 197 |
-
<td>
|
| 198 |
</td>
|
| 199 |
-
<td>
|
| 200 |
</td>
|
| 201 |
</tr>
|
| 202 |
<tr>
|
| 203 |
<td><strong>Average</strong>
|
| 204 |
</td>
|
| 205 |
-
<td><strong>73.
|
| 206 |
</td>
|
| 207 |
-
<td><strong>73.
|
| 208 |
</td>
|
| 209 |
-
<td><strong>99.
|
| 210 |
</td>
|
| 211 |
</tr>
|
| 212 |
</table>
|
|
|
|
| 17 |
- **Activation quantization:** FP8
|
| 18 |
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
|
| 19 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 20 |
+
- **Release Date:** 8/12/2024
|
| 21 |
+
- **Version:** 1.1
|
| 22 |
- **License(s):** [mit](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct/resolve/main/LICENSE)
|
| 23 |
- **Model Developers:** Neural Magic
|
| 24 |
|
| 25 |
+
Quantized version of [Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct), with the new configuration files.
|
| 26 |
+
It achieves an average score of 73.65 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.95.
|
| 27 |
|
| 28 |
### Model Optimizations
|
| 29 |
|
|
|
|
| 68 |
|
| 69 |
## Creation
|
| 70 |
|
| 71 |
+
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
|
| 72 |
+
Importantly, the "rope_scaling" type in config.json was manually changed from "longrope" to "su" following quantization.
|
| 73 |
|
| 74 |
```python
|
| 75 |
+
import torch
|
| 76 |
from datasets import load_dataset
|
| 77 |
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
| 80 |
+
from llmcompressor.transformers.compression.helpers import (
|
| 81 |
+
calculate_offload_device_map,
|
| 82 |
+
custom_offload_device_map,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
+
recipe = """
|
| 86 |
+
quant_stage:
|
| 87 |
+
quant_modifiers:
|
| 88 |
+
QuantizationModifier:
|
| 89 |
+
ignore: ["lm_head"]
|
| 90 |
+
config_groups:
|
| 91 |
+
group_0:
|
| 92 |
+
weights:
|
| 93 |
+
num_bits: 8
|
| 94 |
+
type: float
|
| 95 |
+
strategy: tensor
|
| 96 |
+
dynamic: false
|
| 97 |
+
symmetric: true
|
| 98 |
+
input_activations:
|
| 99 |
+
num_bits: 8
|
| 100 |
+
type: float
|
| 101 |
+
strategy: tensor
|
| 102 |
+
dynamic: false
|
| 103 |
+
symmetric: true
|
| 104 |
+
targets: ["Linear"]
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
model_stub = "microsoft/Phi-3-medium-128k-instruct"
|
| 108 |
+
model_name = model_stub.split("/")[-1]
|
| 109 |
+
|
| 110 |
+
device_map = calculate_offload_device_map(
|
| 111 |
+
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype=torch.float16
|
| 112 |
+
)
|
| 113 |
|
| 114 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 115 |
+
model_stub, torch_dtype=torch.float16, device_map=device_map
|
| 116 |
+
)
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 118 |
+
|
| 119 |
+
output_dir = f"./{model_name}-FP8"
|
| 120 |
+
|
| 121 |
+
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
| 122 |
+
DATASET_SPLIT = "train_sft"
|
| 123 |
+
NUM_CALIBRATION_SAMPLES = 512
|
| 124 |
+
MAX_SEQUENCE_LENGTH = 4096
|
| 125 |
+
|
| 126 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
| 127 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
| 128 |
+
|
| 129 |
+
def preprocess(example):
|
| 130 |
+
return {
|
| 131 |
+
"text": tokenizer.apply_chat_template(
|
| 132 |
+
example["messages"],
|
| 133 |
+
tokenize=False,
|
| 134 |
+
)
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
ds = ds.map(preprocess)
|
| 138 |
+
|
| 139 |
+
def tokenize(sample):
|
| 140 |
+
return tokenizer(
|
| 141 |
+
sample["text"],
|
| 142 |
+
padding=False,
|
| 143 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 144 |
+
truncation=True,
|
| 145 |
+
add_special_tokens=False,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
| 149 |
+
|
| 150 |
+
oneshot(
|
| 151 |
+
model=model,
|
| 152 |
+
output_dir=output_dir,
|
| 153 |
+
dataset=ds,
|
| 154 |
+
recipe=recipe,
|
| 155 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
| 156 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
| 157 |
+
save_compressed=True,
|
| 158 |
+
)
|
| 159 |
```
|
| 160 |
|
| 161 |
## Evaluation
|
|
|
|
| 164 |
```
|
| 165 |
lm_eval \
|
| 166 |
--model vllm \
|
| 167 |
+
--model_args pretrained="neuralmagic/Phi-3-medium-128k-instruct-FP8",dtype=auto,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096 \
|
| 168 |
--tasks openllm \
|
| 169 |
--batch_size auto
|
| 170 |
```
|
|
|
|
| 186 |
<tr>
|
| 187 |
<td>MMLU (5-shot)
|
| 188 |
</td>
|
| 189 |
+
<td>76.53
|
| 190 |
</td>
|
| 191 |
+
<td>76.66
|
| 192 |
</td>
|
| 193 |
+
<td>100.1%
|
| 194 |
</td>
|
| 195 |
</tr>
|
| 196 |
<tr>
|
| 197 |
<td>ARC Challenge (25-shot)
|
| 198 |
</td>
|
| 199 |
+
<td>68.17
|
| 200 |
</td>
|
| 201 |
+
<td>67.06
|
| 202 |
</td>
|
| 203 |
+
<td>98.37%
|
| 204 |
</td>
|
| 205 |
</tr>
|
| 206 |
<tr>
|
| 207 |
<td>GSM-8K (5-shot, strict-match)
|
| 208 |
</td>
|
| 209 |
+
<td>84.46
|
| 210 |
</td>
|
| 211 |
+
<td>84.31
|
| 212 |
</td>
|
| 213 |
+
<td>99.82%
|
| 214 |
</td>
|
| 215 |
</tr>
|
| 216 |
<tr>
|
| 217 |
<td>Hellaswag (10-shot)
|
| 218 |
</td>
|
| 219 |
+
<td>84.77
|
| 220 |
</td>
|
| 221 |
+
<td>84.63
|
| 222 |
</td>
|
| 223 |
+
<td>99.83%
|
| 224 |
</td>
|
| 225 |
</tr>
|
| 226 |
<tr>
|
| 227 |
<td>Winogrande (5-shot)
|
| 228 |
</td>
|
| 229 |
+
<td>75.22
|
| 230 |
</td>
|
| 231 |
+
<td>74.51
|
| 232 |
</td>
|
| 233 |
+
<td>99.06%
|
| 234 |
</td>
|
| 235 |
</tr>
|
| 236 |
<tr>
|
| 237 |
<td>TruthfulQA (0-shot)
|
| 238 |
</td>
|
| 239 |
+
<td>54.52
|
| 240 |
</td>
|
| 241 |
+
<td>54.71
|
| 242 |
</td>
|
| 243 |
+
<td>100.35%
|
| 244 |
</td>
|
| 245 |
</tr>
|
| 246 |
<tr>
|
| 247 |
<td><strong>Average</strong>
|
| 248 |
</td>
|
| 249 |
+
<td><strong>73.95</strong>
|
| 250 |
</td>
|
| 251 |
+
<td><strong>73.65</strong>
|
| 252 |
</td>
|
| 253 |
+
<td><strong>99.60%</strong>
|
| 254 |
</td>
|
| 255 |
</tr>
|
| 256 |
</table>
|