Update README.md
Browse files
README.md
CHANGED
|
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 36 |
-
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
@@ -149,6 +149,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
| 149 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 150 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
| 151 |
|
|
|
|
|
|
|
| 152 |
### Accuracy
|
| 153 |
|
| 154 |
#### Open LLM Leaderboard evaluation scores
|
|
@@ -158,7 +160,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 158 |
</td>
|
| 159 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
| 160 |
</td>
|
| 161 |
-
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.
|
| 162 |
</td>
|
| 163 |
<td><strong>Recovery</strong>
|
| 164 |
</td>
|
|
@@ -166,31 +168,21 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 166 |
<tr>
|
| 167 |
<td>MMLU (5-shot)
|
| 168 |
</td>
|
| 169 |
-
<td>87.
|
| 170 |
</td>
|
| 171 |
<td>86.76
|
| 172 |
</td>
|
| 173 |
<td>99.3%
|
| 174 |
</td>
|
| 175 |
-
</tr>
|
| 176 |
-
<tr>
|
| 177 |
-
<td>MMLU (CoT, 0-shot)
|
| 178 |
-
</td>
|
| 179 |
-
<td>88.26
|
| 180 |
-
</td>
|
| 181 |
-
<td>87.42
|
| 182 |
-
</td>
|
| 183 |
-
<td>99.0%
|
| 184 |
-
</td>
|
| 185 |
</tr>
|
| 186 |
<tr>
|
| 187 |
<td>ARC Challenge (0-shot)
|
| 188 |
</td>
|
| 189 |
<td>94.97
|
| 190 |
</td>
|
| 191 |
-
<td>94.
|
| 192 |
</td>
|
| 193 |
-
<td>99.
|
| 194 |
</td>
|
| 195 |
</tr>
|
| 196 |
<tr>
|
|
@@ -198,19 +190,19 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 198 |
</td>
|
| 199 |
<td>96.44
|
| 200 |
</td>
|
| 201 |
-
<td>
|
| 202 |
</td>
|
| 203 |
-
<td>99.
|
| 204 |
</td>
|
| 205 |
</tr>
|
| 206 |
<tr>
|
| 207 |
<td>Hellaswag (10-shot)
|
| 208 |
-
</td>
|
| 209 |
<td>88.33
|
| 210 |
</td>
|
| 211 |
-
<td>88.
|
| 212 |
</td>
|
| 213 |
-
<td>99.
|
| 214 |
</td>
|
| 215 |
</tr>
|
| 216 |
<tr>
|
|
@@ -218,19 +210,19 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 218 |
</td>
|
| 219 |
<td>87.21
|
| 220 |
</td>
|
| 221 |
-
<td>86.
|
| 222 |
</td>
|
| 223 |
-
<td>
|
| 224 |
</td>
|
| 225 |
</tr>
|
| 226 |
<tr>
|
| 227 |
-
<td>TruthfulQA (0-shot
|
| 228 |
</td>
|
| 229 |
<td>64.64
|
| 230 |
</td>
|
| 231 |
-
<td>64.
|
| 232 |
</td>
|
| 233 |
-
<td>99.
|
| 234 |
</td>
|
| 235 |
</tr>
|
| 236 |
<tr>
|
|
@@ -238,9 +230,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 238 |
</td>
|
| 239 |
<td><strong>86.75</strong>
|
| 240 |
</td>
|
| 241 |
-
<td><strong>86.
|
| 242 |
</td>
|
| 243 |
-
<td><strong>99.
|
| 244 |
</td>
|
| 245 |
</tr>
|
| 246 |
</table>
|
|
@@ -253,7 +245,7 @@ The results were obtained using the following commands:
|
|
| 253 |
```
|
| 254 |
lm_eval \
|
| 255 |
--model vllm \
|
| 256 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
| 257 |
--tasks mmlu_llama_3.1_instruct \
|
| 258 |
--fewshot_as_multiturn \
|
| 259 |
--apply_chat_template \
|
|
@@ -265,7 +257,7 @@ lm_eval \
|
|
| 265 |
```
|
| 266 |
lm_eval \
|
| 267 |
--model vllm \
|
| 268 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
| 269 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 270 |
--apply_chat_template \
|
| 271 |
--num_fewshot 0 \
|
|
@@ -276,7 +268,7 @@ lm_eval \
|
|
| 276 |
```
|
| 277 |
lm_eval \
|
| 278 |
--model vllm \
|
| 279 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
| 280 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 281 |
--apply_chat_template \
|
| 282 |
--num_fewshot 0 \
|
|
@@ -287,7 +279,7 @@ lm_eval \
|
|
| 287 |
```
|
| 288 |
lm_eval \
|
| 289 |
--model vllm \
|
| 290 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
| 291 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 292 |
--fewshot_as_multiturn \
|
| 293 |
--apply_chat_template \
|
|
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 36 |
+
It achieves scores within 1.3% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
|
|
| 149 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 150 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
| 151 |
|
| 152 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
| 153 |
+
|
| 154 |
### Accuracy
|
| 155 |
|
| 156 |
#### Open LLM Leaderboard evaluation scores
|
|
|
|
| 160 |
</td>
|
| 161 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
| 162 |
</td>
|
| 163 |
+
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
| 164 |
</td>
|
| 165 |
<td><strong>Recovery</strong>
|
| 166 |
</td>
|
|
|
|
| 168 |
<tr>
|
| 169 |
<td>MMLU (5-shot)
|
| 170 |
</td>
|
| 171 |
+
<td>87.38
|
| 172 |
</td>
|
| 173 |
<td>86.76
|
| 174 |
</td>
|
| 175 |
<td>99.3%
|
| 176 |
</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
</tr>
|
| 178 |
<tr>
|
| 179 |
<td>ARC Challenge (0-shot)
|
| 180 |
</td>
|
| 181 |
<td>94.97
|
| 182 |
</td>
|
| 183 |
+
<td>94.37
|
| 184 |
</td>
|
| 185 |
+
<td>99.4%
|
| 186 |
</td>
|
| 187 |
</tr>
|
| 188 |
<tr>
|
|
|
|
| 190 |
</td>
|
| 191 |
<td>96.44
|
| 192 |
</td>
|
| 193 |
+
<td>95.45
|
| 194 |
</td>
|
| 195 |
+
<td>99.0%
|
| 196 |
</td>
|
| 197 |
</tr>
|
| 198 |
<tr>
|
| 199 |
<td>Hellaswag (10-shot)
|
| 200 |
+
</td>
|
| 201 |
<td>88.33
|
| 202 |
</td>
|
| 203 |
+
<td>88.15
|
| 204 |
</td>
|
| 205 |
+
<td>99.8%
|
| 206 |
</td>
|
| 207 |
</tr>
|
| 208 |
<tr>
|
|
|
|
| 210 |
</td>
|
| 211 |
<td>87.21
|
| 212 |
</td>
|
| 213 |
+
<td>86.11
|
| 214 |
</td>
|
| 215 |
+
<td>98.7%
|
| 216 |
</td>
|
| 217 |
</tr>
|
| 218 |
<tr>
|
| 219 |
+
<td>TruthfulQA (0-shot)
|
| 220 |
</td>
|
| 221 |
<td>64.64
|
| 222 |
</td>
|
| 223 |
+
<td>64.39
|
| 224 |
</td>
|
| 225 |
+
<td>99.6%
|
| 226 |
</td>
|
| 227 |
</tr>
|
| 228 |
<tr>
|
|
|
|
| 230 |
</td>
|
| 231 |
<td><strong>86.75</strong>
|
| 232 |
</td>
|
| 233 |
+
<td><strong>86.11</strong>
|
| 234 |
</td>
|
| 235 |
+
<td><strong>99.3%</strong>
|
| 236 |
</td>
|
| 237 |
</tr>
|
| 238 |
</table>
|
|
|
|
| 245 |
```
|
| 246 |
lm_eval \
|
| 247 |
--model vllm \
|
| 248 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=8 \
|
| 249 |
--tasks mmlu_llama_3.1_instruct \
|
| 250 |
--fewshot_as_multiturn \
|
| 251 |
--apply_chat_template \
|
|
|
|
| 257 |
```
|
| 258 |
lm_eval \
|
| 259 |
--model vllm \
|
| 260 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=8 \
|
| 261 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 262 |
--apply_chat_template \
|
| 263 |
--num_fewshot 0 \
|
|
|
|
| 268 |
```
|
| 269 |
lm_eval \
|
| 270 |
--model vllm \
|
| 271 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=8 \
|
| 272 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 273 |
--apply_chat_template \
|
| 274 |
--num_fewshot 0 \
|
|
|
|
| 279 |
```
|
| 280 |
lm_eval \
|
| 281 |
--model vllm \
|
| 282 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=8 \
|
| 283 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 284 |
--fewshot_as_multiturn \
|
| 285 |
--apply_chat_template \
|