import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Insert your medical query here MEDICAL_QUERY = """ """ def load_model(model_path): model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_path) return model, tokenizer def generate_response(model, tokenizer, medical_query): medical_query = medical_query.strip() prompt = f"USER: {medical_query}\nASSISTANT:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=12000, temperature=0.3, top_p=0.7, repetition_penalty=1.05, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) full_response = response.split("ASSISTANT:")[-1].strip() if "" in full_response: end_pos = full_response.find("") + len("") return full_response[:end_pos] return full_response def run(): model_path = "./" # Path to the directory containing your model weight files model, tokenizer = load_model(model_path) result = generate_response(model, tokenizer, MEDICAL_QUERY) print(result) if __name__ == "__main__": run()