Text Generation
PEFT
Safetensors
GGUF
English
clinicalthought-ai-8b
ClinicalThought-AI-8B
medical-ai
healthcare-ai
clinical-reasoning
chain-of-thought
diagnostic-support
differential-diagnosis
clinical-decision-making
medical-education
reasoning-model
8b
clinical-ai
medical-diagnosis
healthcare-llm
quantized
fine-tuned
lora
medical-nlp
clinical-support
healthcare-professional
evidence-based-medicine
conversational
File size: 1,412 Bytes
44b6aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Insert your medical query here
MEDICAL_QUERY = """
"""
def load_model(model_path):
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
return model, tokenizer
def generate_response(model, tokenizer, medical_query):
medical_query = medical_query.strip()
prompt = f"USER: <medical_query>{medical_query}</medical_query>\nASSISTANT:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=12000,
temperature=0.3,
top_p=0.7,
repetition_penalty=1.05,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
full_response = response.split("ASSISTANT:")[-1].strip()
if "</answer>" in full_response:
end_pos = full_response.find("</answer>") + len("</answer>")
return full_response[:end_pos]
return full_response
def run():
model_path = "./" # Path to the directory containing your model weight files
model, tokenizer = load_model(model_path)
result = generate_response(model, tokenizer, MEDICAL_QUERY)
print(result)
if __name__ == "__main__":
run() |