File size: 1,412 Bytes
44b6aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Insert your medical query here
MEDICAL_QUERY = """

"""

def load_model(model_path):
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        torch_dtype=torch.float16,
        device_map="auto"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    
    return model, tokenizer

def generate_response(model, tokenizer, medical_query):
    medical_query = medical_query.strip()
    prompt = f"USER: <medical_query>{medical_query}</medical_query>\nASSISTANT:"
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=12000,
        temperature=0.3,
        top_p=0.7,
        repetition_penalty=1.05,
        do_sample=True
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    full_response = response.split("ASSISTANT:")[-1].strip()
    
    if "</answer>" in full_response:
        end_pos = full_response.find("</answer>") + len("</answer>")
        return full_response[:end_pos]
    
    return full_response

def run():
    model_path = "./" # Path to the directory containing your model weight files
    model, tokenizer = load_model(model_path)
    result = generate_response(model, tokenizer, MEDICAL_QUERY)
    print(result)

if __name__ == "__main__":
    run()