Initial upload
Browse files- README.md +300 -3
- config.json +50 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
CHANGED
|
@@ -1,3 +1,300 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- de
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:8066634
|
| 11 |
+
- loss:MultipleNegativesRankingLoss
|
| 12 |
+
widget:
|
| 13 |
+
- source_sentence: Diese drei geheimnisvollen Männer kamen uns dann zu Hilfe.
|
| 14 |
+
sentences:
|
| 15 |
+
- Drei ziemlich seltsame Typen halfen uns danach.
|
| 16 |
+
- Diese drei schwarzen Vögel sahen dann in unseren Garten.
|
| 17 |
+
- Einige Leute sind hilfsbereit.
|
| 18 |
+
- Un, zwei, drei... Wer kann die nächsten Zahlen erraten?
|
| 19 |
+
pipeline_tag: sentence-similarity
|
| 20 |
+
library_name: sentence-transformers
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# FMMB-BE-DE: The Fairly Multilingual ModernBERT Embedding Model (Belgian Edition): Monolingual German version.
|
| 24 |
+
|
| 25 |
+
🇳🇱 This monolingual German version of the [Fairly Multilingual ModernBERT Embedding Model (Belgian Edition)](https://huggingface.co/Parallia/Fairly-Multilingual-ModernBERT-Embed-BE) is the perfect model for embedding texts up to 8192 tokens written in German at the speed of light. It uses the exact same weights as the original FMMB-BE model, and therefore produces identical embeddings, but this version comes with only a German-optimized tokenizer and its associated embedding table, thereby improving performance.
|
| 26 |
+
|
| 27 |
+
🆘 This [sentence-transformers](https://www.SBERT.net) model was trained on a small parallel corpus containing English-French, English-Dutch, and English-German sentence pairs. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. The input texts can be used as-is, no need to use prefixes.
|
| 28 |
+
|
| 29 |
+
🪄 Thanks to the magic of [Trans-Tokenization](https://huggingface.co/papers/2408.04303), monoligual English models such as [ModernBERT-Embed from Nomic AI](https://huggingface.co/nomic-ai/modernbert-embed-base) can be turned into embedding models for another language. And this, with almost no GPU compute involved! 🤯
|
| 30 |
+
|
| 31 |
+
⚖️ Each of the 5 FMMB-BE models are actually copies of the exact same model, paired with different tokenizers and embedding tables. Indeed, as all trans-tokenized models operate on embeddings in the same latent space, aligning them cross-lingually is a breeze: after creating a "super" model which can speak in all of the 4 tokenizers, this model can be finetuned to produce similar embeddings for sentences which are translation of each other.
|
| 32 |
+
|
| 33 |
+
⚡ ModernBERT, developped last month by Answer Ai and LightOn, is about 3x to 6x faster at inference time than regular BERT/RoBERTa models, while providing us with superior results. This makes it a wonderful choice for many use cases.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Model Details
|
| 37 |
+
|
| 38 |
+
### Model Description
|
| 39 |
+
- **Model Type:** Sentence Transformer
|
| 40 |
+
- **Base model:** [ModernBERT-Embed-Base](https://huggingface.co/nomic-ai/modernbert-embed-base)
|
| 41 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 42 |
+
- **Output Dimensionality:** 768 dimensions
|
| 43 |
+
- **Similarity Function:** Cosine Similarity
|
| 44 |
+
- **Training Dataset:**
|
| 45 |
+
- parallel-sentences
|
| 46 |
+
- **Languages:** nl
|
| 47 |
+
- **License:** apache-2.0
|
| 48 |
+
|
| 49 |
+
### Full Model Architecture
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
SentenceTransformer(
|
| 53 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 54 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 55 |
+
)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Usage
|
| 59 |
+
|
| 60 |
+
**IMPORTANT:** While waiting for the next stable release of the `transformers` library, please install the latest git release to use `modernbert` models:
|
| 61 |
+
|
| 62 |
+
```bash
|
| 63 |
+
pip install --upgrade git+https://github.com/huggingface/transformers.git
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
The easiest way to use this model is to install the Sentence Transformers library:
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
pip install -U sentence-transformers
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
Then you can load this model and run inference.
|
| 73 |
+
```python
|
| 74 |
+
from sentence_transformers import SentenceTransformer
|
| 75 |
+
|
| 76 |
+
# Download from the 🤗 Hub
|
| 77 |
+
model = SentenceTransformer("Parallia/Fairly-Multilingual-ModernBERT-Embed-BE-DE")
|
| 78 |
+
# Run inference
|
| 79 |
+
sentences = [
|
| 80 |
+
'Diese drei geheimnisvollen Männer kamen uns dann zu Hilfe.',
|
| 81 |
+
'Drei ziemlich seltsame Typen halfen uns danach.',
|
| 82 |
+
'Diese drei schwarzen Vögel sahen dann in unseren Garten.',
|
| 83 |
+
'Einige Leute sind hilfsbereit.',
|
| 84 |
+
'Un, zwei, drei... Wer kann die nächsten Zahlen erraten?',
|
| 85 |
+
]
|
| 86 |
+
embeddings = model.encode(sentences)
|
| 87 |
+
print(embeddings.shape)
|
| 88 |
+
# [5, 768]
|
| 89 |
+
|
| 90 |
+
# Get the similarity scores for the embeddings
|
| 91 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 92 |
+
print(similarities.shape)
|
| 93 |
+
# [5, 5]
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
<!--
|
| 97 |
+
### Recommendations
|
| 98 |
+
|
| 99 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 100 |
+
-->
|
| 101 |
+
|
| 102 |
+
## Training Details
|
| 103 |
+
|
| 104 |
+
### Training Dataset
|
| 105 |
+
|
| 106 |
+
#### parallel-sentences
|
| 107 |
+
|
| 108 |
+
* Dataset: parallel dataset
|
| 109 |
+
* Size: 8,066,634 training samples
|
| 110 |
+
* Columns: <code>sent1</code> and <code>sent2</code>
|
| 111 |
+
* Approximate statistics based on the first 1000 samples:
|
| 112 |
+
| | sent1 | sent2 |
|
| 113 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 114 |
+
| type | string | string |
|
| 115 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.86 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.87 tokens</li><li>max: 52 tokens</li></ul> |
|
| 116 |
+
* Samples:
|
| 117 |
+
| sent1 | sent2 |
|
| 118 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 119 |
+
| <code>The faces may change, but the essential views that have characterised Israel’s government for decades will remain the same after 9 April</code> | <code>Les visages peuvent changer, mais les opinions fondamentales qui caractérisent le gouvernement israélien depuis des décennies resteront les mêmes après le 9 avril</code> |
|
| 120 |
+
| <code>- Yeah. My husband never talked about business.</code> | <code>M'n man had het nooit over z'n zaken.</code> |
|
| 121 |
+
| <code>Or do they think that We hear not their secrets and their private counsels?</code> | <code>Oder meinen sie, daß Wir ihre Geheimnisse und heimlichen Beratungen nicht hören?</code> |
|
| 122 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 123 |
+
```json
|
| 124 |
+
{
|
| 125 |
+
"scale": 20.0,
|
| 126 |
+
"similarity_fct": "cos_sim"
|
| 127 |
+
}
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
### Training Hyperparameters
|
| 131 |
+
#### Non-Default Hyperparameters
|
| 132 |
+
|
| 133 |
+
- `eval_strategy`: steps
|
| 134 |
+
- `per_device_train_batch_size`: 256
|
| 135 |
+
- `per_device_eval_batch_size`: 256
|
| 136 |
+
- `learning_rate`: 2e-05
|
| 137 |
+
- `num_train_epochs`: 1
|
| 138 |
+
- `warmup_ratio`: 0.1
|
| 139 |
+
- `bf16`: True
|
| 140 |
+
|
| 141 |
+
#### All Hyperparameters
|
| 142 |
+
<details><summary>Click to expand</summary>
|
| 143 |
+
|
| 144 |
+
- `overwrite_output_dir`: False
|
| 145 |
+
- `do_predict`: False
|
| 146 |
+
- `eval_strategy`: steps
|
| 147 |
+
- `prediction_loss_only`: True
|
| 148 |
+
- `per_device_train_batch_size`: 256
|
| 149 |
+
- `per_device_eval_batch_size`: 256
|
| 150 |
+
- `per_gpu_train_batch_size`: None
|
| 151 |
+
- `per_gpu_eval_batch_size`: None
|
| 152 |
+
- `gradient_accumulation_steps`: 1
|
| 153 |
+
- `eval_accumulation_steps`: None
|
| 154 |
+
- `torch_empty_cache_steps`: None
|
| 155 |
+
- `learning_rate`: 2e-05
|
| 156 |
+
- `weight_decay`: 0.0
|
| 157 |
+
- `adam_beta1`: 0.9
|
| 158 |
+
- `adam_beta2`: 0.999
|
| 159 |
+
- `adam_epsilon`: 1e-08
|
| 160 |
+
- `max_grad_norm`: 1.0
|
| 161 |
+
- `num_train_epochs`: 1
|
| 162 |
+
- `max_steps`: -1
|
| 163 |
+
- `lr_scheduler_type`: linear
|
| 164 |
+
- `lr_scheduler_kwargs`: {}
|
| 165 |
+
- `warmup_ratio`: 0.1
|
| 166 |
+
- `warmup_steps`: 0
|
| 167 |
+
- `log_level`: passive
|
| 168 |
+
- `log_level_replica`: warning
|
| 169 |
+
- `log_on_each_node`: True
|
| 170 |
+
- `logging_nan_inf_filter`: True
|
| 171 |
+
- `save_safetensors`: True
|
| 172 |
+
- `save_on_each_node`: False
|
| 173 |
+
- `save_only_model`: False
|
| 174 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 175 |
+
- `no_cuda`: False
|
| 176 |
+
- `use_cpu`: False
|
| 177 |
+
- `use_mps_device`: False
|
| 178 |
+
- `seed`: 42
|
| 179 |
+
- `data_seed`: None
|
| 180 |
+
- `jit_mode_eval`: False
|
| 181 |
+
- `use_ipex`: False
|
| 182 |
+
- `bf16`: True
|
| 183 |
+
- `fp16`: False
|
| 184 |
+
- `fp16_opt_level`: O1
|
| 185 |
+
- `half_precision_backend`: auto
|
| 186 |
+
- `bf16_full_eval`: False
|
| 187 |
+
- `fp16_full_eval`: False
|
| 188 |
+
- `tf32`: None
|
| 189 |
+
- `local_rank`: 0
|
| 190 |
+
- `ddp_backend`: None
|
| 191 |
+
- `tpu_num_cores`: None
|
| 192 |
+
- `tpu_metrics_debug`: False
|
| 193 |
+
- `debug`: []
|
| 194 |
+
- `dataloader_drop_last`: False
|
| 195 |
+
- `dataloader_num_workers`: 0
|
| 196 |
+
- `dataloader_prefetch_factor`: None
|
| 197 |
+
- `past_index`: -1
|
| 198 |
+
- `disable_tqdm`: False
|
| 199 |
+
- `remove_unused_columns`: True
|
| 200 |
+
- `label_names`: None
|
| 201 |
+
- `load_best_model_at_end`: False
|
| 202 |
+
- `ignore_data_skip`: False
|
| 203 |
+
- `fsdp`: []
|
| 204 |
+
- `fsdp_min_num_params`: 0
|
| 205 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 206 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 207 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 208 |
+
- `deepspeed`: None
|
| 209 |
+
- `label_smoothing_factor`: 0.0
|
| 210 |
+
- `optim`: adamw_torch
|
| 211 |
+
- `optim_args`: None
|
| 212 |
+
- `adafactor`: False
|
| 213 |
+
- `group_by_length`: False
|
| 214 |
+
- `length_column_name`: length
|
| 215 |
+
- `ddp_find_unused_parameters`: None
|
| 216 |
+
- `ddp_bucket_cap_mb`: None
|
| 217 |
+
- `ddp_broadcast_buffers`: False
|
| 218 |
+
- `dataloader_pin_memory`: True
|
| 219 |
+
- `dataloader_persistent_workers`: False
|
| 220 |
+
- `skip_memory_metrics`: True
|
| 221 |
+
- `use_legacy_prediction_loop`: False
|
| 222 |
+
- `push_to_hub`: False
|
| 223 |
+
- `resume_from_checkpoint`: None
|
| 224 |
+
- `hub_model_id`: None
|
| 225 |
+
- `hub_strategy`: every_save
|
| 226 |
+
- `hub_private_repo`: None
|
| 227 |
+
- `hub_always_push`: False
|
| 228 |
+
- `gradient_checkpointing`: False
|
| 229 |
+
- `gradient_checkpointing_kwargs`: None
|
| 230 |
+
- `include_inputs_for_metrics`: False
|
| 231 |
+
- `include_for_metrics`: []
|
| 232 |
+
- `eval_do_concat_batches`: True
|
| 233 |
+
- `fp16_backend`: auto
|
| 234 |
+
- `push_to_hub_model_id`: None
|
| 235 |
+
- `push_to_hub_organization`: None
|
| 236 |
+
- `mp_parameters`:
|
| 237 |
+
- `auto_find_batch_size`: False
|
| 238 |
+
- `full_determinism`: False
|
| 239 |
+
- `torchdynamo`: None
|
| 240 |
+
- `ray_scope`: last
|
| 241 |
+
- `ddp_timeout`: 1800
|
| 242 |
+
- `torch_compile`: False
|
| 243 |
+
- `torch_compile_backend`: None
|
| 244 |
+
- `torch_compile_mode`: None
|
| 245 |
+
- `dispatch_batches`: None
|
| 246 |
+
- `split_batches`: None
|
| 247 |
+
- `include_tokens_per_second`: False
|
| 248 |
+
- `include_num_input_tokens_seen`: False
|
| 249 |
+
- `neftune_noise_alpha`: None
|
| 250 |
+
- `optim_target_modules`: None
|
| 251 |
+
- `batch_eval_metrics`: False
|
| 252 |
+
- `eval_on_start`: False
|
| 253 |
+
- `use_liger_kernel`: False
|
| 254 |
+
- `eval_use_gather_object`: False
|
| 255 |
+
- `average_tokens_across_devices`: False
|
| 256 |
+
- `prompts`: None
|
| 257 |
+
- `batch_sampler`: batch_sampler
|
| 258 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 259 |
+
|
| 260 |
+
</details>
|
| 261 |
+
|
| 262 |
+
### Framework Versions
|
| 263 |
+
- Python: 3.11.7
|
| 264 |
+
- Sentence Transformers: 3.3.1
|
| 265 |
+
- Transformers: 4.48.0.dev0
|
| 266 |
+
- PyTorch: 2.2.0+cu121
|
| 267 |
+
- Accelerate: 1.0.1
|
| 268 |
+
- Datasets: 3.2.0
|
| 269 |
+
- Tokenizers: 0.21.0
|
| 270 |
+
|
| 271 |
+
## Citation
|
| 272 |
+
|
| 273 |
+
If you use or finetune this model, please consider citing this paper and the sentence-transformers library:
|
| 274 |
+
|
| 275 |
+
### BibTeX
|
| 276 |
+
|
| 277 |
+
### This model
|
| 278 |
+
```bibtex
|
| 279 |
+
@misc{henderson2017efficient,
|
| 280 |
+
title={The Fairly Multilingual ModernBERT Embbeding Model -- Belgian Edition},
|
| 281 |
+
author={Francois Remy},
|
| 282 |
+
year={2025},
|
| 283 |
+
eprint={2501.99999},
|
| 284 |
+
archivePrefix={arXiv},
|
| 285 |
+
primaryClass={cs.CL}
|
| 286 |
+
}
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
#### Sentence Transformers
|
| 290 |
+
```bibtex
|
| 291 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 292 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 293 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 294 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 295 |
+
month = "11",
|
| 296 |
+
year = "2019",
|
| 297 |
+
publisher = "Association for Computational Linguistics",
|
| 298 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 299 |
+
}
|
| 300 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Parallia/Fairly-Multilingual-ModernBERT-Embed-BE-DE",
|
| 3 |
+
"additional_special_tokens_ids": [],
|
| 4 |
+
"architectures": [
|
| 5 |
+
"ModernBertModel"
|
| 6 |
+
],
|
| 7 |
+
"attention_bias": false,
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"classifier_activation": "gelu",
|
| 11 |
+
"classifier_bias": false,
|
| 12 |
+
"classifier_dropout": 0.0,
|
| 13 |
+
"classifier_pooling": "mean",
|
| 14 |
+
"cls_token_id": null,
|
| 15 |
+
"decoder_bias": true,
|
| 16 |
+
"deterministic_flash_attn": false,
|
| 17 |
+
"embedding_dropout": 0.0,
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"global_attn_every_n_layers": 3,
|
| 20 |
+
"global_rope_theta": 160000.0,
|
| 21 |
+
"gradient_checkpointing": false,
|
| 22 |
+
"hidden_activation": "gelu",
|
| 23 |
+
"hidden_size": 768,
|
| 24 |
+
"initializer_cutoff_factor": 2.0,
|
| 25 |
+
"initializer_range": 0.02,
|
| 26 |
+
"intermediate_size": 1152,
|
| 27 |
+
"layer_norm_eps": 1e-05,
|
| 28 |
+
"local_attention": 128,
|
| 29 |
+
"local_rope_theta": 10000.0,
|
| 30 |
+
"mask_token_id": null,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"mlp_bias": false,
|
| 33 |
+
"mlp_dropout": 0.0,
|
| 34 |
+
"model_type": "modernbert",
|
| 35 |
+
"norm_bias": false,
|
| 36 |
+
"norm_eps": 1e-05,
|
| 37 |
+
"num_attention_heads": 12,
|
| 38 |
+
"num_hidden_layers": 22,
|
| 39 |
+
"pad_token_id": null,
|
| 40 |
+
"position_embedding_type": "absolute",
|
| 41 |
+
"reference_compile": false,
|
| 42 |
+
"sep_token_id": null,
|
| 43 |
+
"sparse_pred_ignore_index": -100,
|
| 44 |
+
"sparse_prediction": false,
|
| 45 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
| 46 |
+
"torch_dtype": "float32",
|
| 47 |
+
"transformers_version": "4.48.0.dev0",
|
| 48 |
+
"unk_token_id": 0,
|
| 49 |
+
"vocab_size": 50000
|
| 50 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.48.0.dev0",
|
| 5 |
+
"pytorch": "2.2.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e01f1e4a3baf4daa88c5a5f8a184168fad14d418accd17fe170c9f145934c53
|
| 3 |
+
size 594939640
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8aa4a173bdfd6a04db88822c6191223bad9f696bfdac314abd3014ea7b9d220
|
| 3 |
+
size 1082760
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"extra_special_tokens": {},
|
| 35 |
+
"legacy": true,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": null,
|
| 38 |
+
"sp_model_kwargs": {},
|
| 39 |
+
"spaces_between_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|