Phospheneser commited on
Commit
6a08953
·
verified ·
1 Parent(s): 51e670e
.gitattributes CHANGED
@@ -1,35 +1,2 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  *.safetensors filter=lfs diff=lfs merge=lfs -text
2
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MossSpeechForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "audio_pad_token_id": 512,
8
+ "audio_vocab_size": 16512,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_moss_speech.MossSpeechConfig",
11
+ "AutoModel": "modeling_moss_speech.MossSpeechForCausalLM"
12
+ },
13
+ "channels": 2,
14
+ "dtype": "bfloat16",
15
+ "eos_token_id": 151645,
16
+ "eosp_token_id": 16384,
17
+ "head_dim": 128,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 4096,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 12288,
22
+ "layer_types": [
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention"
59
+ ],
60
+ "max_position_embeddings": 40960,
61
+ "max_window_layers": null,
62
+ "modality_pad_token_id": 151667,
63
+ "model_type": "moss_speech",
64
+ "num_attention_heads": 32,
65
+ "num_hidden_layers": 36,
66
+ "num_key_value_heads": 8,
67
+ "num_modality_layers": 4,
68
+ "num_shared_layers": 32,
69
+ "rms_norm_eps": 1e-06,
70
+ "rope_scaling": null,
71
+ "rope_theta": 1000000,
72
+ "sliding_window": null,
73
+ "sosp_token_id": 151646,
74
+ "tie_word_embeddings": false,
75
+ "transformers_version": "4.57.0.dev0",
76
+ "use_cache": true,
77
+ "use_sliding_window": false,
78
+ "vocab_size": 151680,
79
+ "vocab_size_list": [
80
+ 151680,
81
+ 16512
82
+ ]
83
+ }
configuration_moss_speech.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/moss_speech/modular_moss_speech.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_moss_speech.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2025 the HuggingFace Team. All rights reserved.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+
23
+ from transformers.configuration_utils import PretrainedConfig, layer_type_validation
24
+ from transformers.modeling_rope_utils import rope_config_validation
25
+
26
+
27
+ class MossSpeechConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`MossSpeechModel`]. It is used to instantiate a
30
+ MossSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of
32
+ MossSpeech-8B [Qwen/MossSpeech-8B](https://huggingface.co/Qwen/MossSpeech-8B).
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 151680):
40
+ Vocabulary size of the MossSpeech model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`MossSpeechModel`].
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 12288):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 36):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*, defaults to 8):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details, check out [this
56
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
57
+ head_dim (`int`, *optional*, defaults to 128):
58
+ The attention head dimension.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 40960):
62
+ The maximum sequence length that this model might ever be used with.
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
71
+ Whether the model's input and output word embeddings should be tied.
72
+ rope_theta (`float`, *optional*, defaults to 10000.0):
73
+ The base period of the RoPE embeddings.
74
+ rope_scaling (`Dict`, *optional*):
75
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
76
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
77
+ accordingly.
78
+ Expected contents:
79
+ `rope_type` (`str`):
80
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
81
+ 'llama3'], with 'default' being the original RoPE implementation.
82
+ `factor` (`float`, *optional*):
83
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
84
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
85
+ original maximum pre-trained length.
86
+ `original_max_position_embeddings` (`int`, *optional*):
87
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
88
+ pretraining.
89
+ `attention_factor` (`float`, *optional*):
90
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
91
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
92
+ `factor` field to infer the suggested value.
93
+ `beta_fast` (`float`, *optional*):
94
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
95
+ ramp function. If unspecified, it defaults to 32.
96
+ `beta_slow` (`float`, *optional*):
97
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
98
+ ramp function. If unspecified, it defaults to 1.
99
+ `short_factor` (`list[float]`, *optional*):
100
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
101
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
102
+ size divided by the number of attention heads divided by 2
103
+ `long_factor` (`list[float]`, *optional*):
104
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
105
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
106
+ size divided by the number of attention heads divided by 2
107
+ `low_freq_factor` (`float`, *optional*):
108
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
109
+ `high_freq_factor` (`float`, *optional*):
110
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
111
+ attention_bias (`bool`, *optional*, defaults to `False`):
112
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
113
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
114
+ Whether to use sliding window attention.
115
+ sliding_window (`int`, *optional*):
116
+ Sliding window attention (SWA) window size. Only used when `use_sliding_window=True`.
117
+ max_window_layers (`int`, *optional*):
118
+ Number of initial layers using full attention. Layers after `max_window_layers` (if any) use SWA.
119
+ layer_types (`list`, *optional*):
120
+ Attention pattern for each layer.
121
+ attention_dropout (`float`, *optional*, defaults to 0.0):
122
+ The dropout ratio for the attention probabilities.
123
+
124
+ audio_vocab_size (`int`, *optional*):
125
+ Vocabulary size for the audio branch used by the audio language modeling head.
126
+ modality_pad_token_id (`int`, *optional*, defaults to 0):
127
+ Token id used to pad the inactive modality channel when generating.
128
+ sosp_token_id (`int`, *optional*):
129
+ Start-of-speech special token id used by the processor and generation logic.
130
+ eosp_token_id (`int`, *optional*):
131
+ End-of-speech special token id used by the processor and generation logic.
132
+ num_shared_layers (`int`, *optional*, defaults to 32):
133
+ Number of shared decoder layers applied before splitting into modality-specific blocks.
134
+ num_modality_layers (`int`, *optional*, defaults to 4):
135
+ Number of decoder layers per modality after the shared block.
136
+
137
+ ```python
138
+ >>> from transformers import MossSpeechModel, MossSpeechConfig
139
+
140
+ >>> # Initializing a MossSpeech style configuration
141
+ >>> configuration = MossSpeechConfig()
142
+
143
+ >>> # Initializing a model from the MossSpeech-8B style configuration
144
+ >>> model = MossSpeechModel(configuration)
145
+
146
+ >>> # Accessing the model configuration
147
+ >>> configuration = model.config
148
+ ```"""
149
+
150
+ model_type = "moss_speech"
151
+ keys_to_ignore_at_inference = ["past_key_values"]
152
+
153
+ # Default tensor parallel plan for base model `MossSpeech`
154
+ base_model_tp_plan = {
155
+ "layers.*.self_attn.q_proj": "colwise",
156
+ "layers.*.self_attn.k_proj": "colwise",
157
+ "layers.*.self_attn.v_proj": "colwise",
158
+ "layers.*.self_attn.o_proj": "rowwise",
159
+ "layers.*.mlp.gate_proj": "colwise",
160
+ "layers.*.mlp.up_proj": "colwise",
161
+ "layers.*.mlp.down_proj": "rowwise",
162
+ }
163
+ base_model_pp_plan = {
164
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
165
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
166
+ "norm": (["hidden_states"], ["hidden_states"]),
167
+ }
168
+
169
+ def __init__(
170
+ self,
171
+ vocab_size=151680,
172
+ hidden_size=4096,
173
+ intermediate_size=12288,
174
+ num_hidden_layers=36,
175
+ num_attention_heads=32,
176
+ num_key_value_heads=8,
177
+ head_dim=128,
178
+ hidden_act="silu",
179
+ max_position_embeddings=40960,
180
+ initializer_range=0.02,
181
+ rms_norm_eps=1e-6,
182
+ use_cache=True,
183
+ tie_word_embeddings=False,
184
+ rope_theta=10000.0,
185
+ rope_scaling=None,
186
+ attention_bias=False,
187
+ use_sliding_window=False,
188
+ sliding_window=None,
189
+ max_window_layers=None,
190
+ layer_types=None,
191
+ attention_dropout=0.0,
192
+ audio_vocab_size=None,
193
+ modality_pad_token_id=0,
194
+ sosp_token_id=None,
195
+ eosp_token_id=None,
196
+ num_shared_layers=32,
197
+ num_modality_layers=4,
198
+ **kwargs,
199
+ ):
200
+ assert num_shared_layers + num_modality_layers == num_hidden_layers, (
201
+ f"num_shared_layers ({num_shared_layers}) + num_modality_layers ({num_modality_layers}) must equal to num_hidden_layers ({num_hidden_layers})"
202
+ )
203
+ self.vocab_size = vocab_size
204
+ self.max_position_embeddings = max_position_embeddings
205
+ self.hidden_size = hidden_size
206
+ self.intermediate_size = intermediate_size
207
+ self.num_hidden_layers = num_hidden_layers
208
+ self.num_attention_heads = num_attention_heads
209
+ self.use_sliding_window = use_sliding_window
210
+ self.sliding_window = sliding_window if self.use_sliding_window else None
211
+ self.max_window_layers = max_window_layers
212
+
213
+ self.audio_vocab_size = audio_vocab_size
214
+ self.modality_pad_token_id = int(modality_pad_token_id)
215
+ self.sosp_token_id = None if sosp_token_id is None else int(sosp_token_id)
216
+ self.eosp_token_id = None if eosp_token_id is None else int(eosp_token_id)
217
+ self.num_shared_layers = int(num_shared_layers)
218
+ self.num_modality_layers = int(num_modality_layers)
219
+
220
+ # for backward compatibility
221
+ if num_key_value_heads is None:
222
+ num_key_value_heads = num_attention_heads
223
+
224
+ self.num_key_value_heads = num_key_value_heads
225
+ self.head_dim = head_dim
226
+ self.hidden_act = hidden_act
227
+ self.initializer_range = initializer_range
228
+ self.rms_norm_eps = rms_norm_eps
229
+ self.use_cache = use_cache
230
+ self.rope_theta = rope_theta
231
+ self.rope_scaling = rope_scaling
232
+ self.attention_bias = attention_bias
233
+ self.attention_dropout = attention_dropout
234
+ # Validate the correctness of rotary position embeddings parameters
235
+ # BC: if there is a 'type' field, move it to 'rope_type'.
236
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
237
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
238
+ rope_config_validation(self)
239
+
240
+ self.layer_types = layer_types
241
+ if self.layer_types is None:
242
+ self.layer_types = [
243
+ (
244
+ "sliding_attention"
245
+ if self.sliding_window is not None and i >= self.max_window_layers
246
+ else "full_attention"
247
+ )
248
+ for i in range(self.num_hidden_layers)
249
+ ]
250
+ layer_type_validation(self.layer_types)
251
+
252
+ super().__init__(
253
+ tie_word_embeddings=tie_word_embeddings,
254
+ **kwargs,
255
+ )
256
+
257
+
258
+ __all__ = ["MossSpeechConfig"]
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.57.0.dev0"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b0908b83517a51a1ae3eb2bc56432c61fc780318bc00502df8bfb189031c2d4
3
+ size 4934764904
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24c9ebe8c47ac0d5feaf303fc927150442a19cfd818d82fda5be11cf225a063f
3
+ size 4983070312
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c64e43975193f66dbf5c36178c186a31450edf13250686eff7a381e3d4181826
3
+ size 4999848064
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8aaf874776836e639c0682c854427eb65cb1b74eea670d885917d54d4d05983
3
+ size 3273762360
model.safetensors.index.json ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 9095694336,
4
+ "total_size": 18191388672
5
+ },
6
+ "weight_map": {
7
+ "audio_lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.audio_block.layers.0.input_layernorm.weight": "model-00004-of-00004.safetensors",
9
+ "model.audio_block.layers.0.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
10
+ "model.audio_block.layers.0.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
11
+ "model.audio_block.layers.0.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
12
+ "model.audio_block.layers.0.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
13
+ "model.audio_block.layers.0.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
14
+ "model.audio_block.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
15
+ "model.audio_block.layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
16
+ "model.audio_block.layers.0.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
17
+ "model.audio_block.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
18
+ "model.audio_block.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
19
+ "model.audio_block.layers.1.input_layernorm.weight": "model-00004-of-00004.safetensors",
20
+ "model.audio_block.layers.1.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
21
+ "model.audio_block.layers.1.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
22
+ "model.audio_block.layers.1.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
23
+ "model.audio_block.layers.1.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
24
+ "model.audio_block.layers.1.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
25
+ "model.audio_block.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
26
+ "model.audio_block.layers.1.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
27
+ "model.audio_block.layers.1.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
28
+ "model.audio_block.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
29
+ "model.audio_block.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
30
+ "model.audio_block.layers.2.input_layernorm.weight": "model-00004-of-00004.safetensors",
31
+ "model.audio_block.layers.2.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
32
+ "model.audio_block.layers.2.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
33
+ "model.audio_block.layers.2.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
34
+ "model.audio_block.layers.2.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
35
+ "model.audio_block.layers.2.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
36
+ "model.audio_block.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
37
+ "model.audio_block.layers.2.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
38
+ "model.audio_block.layers.2.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
39
+ "model.audio_block.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
40
+ "model.audio_block.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
41
+ "model.audio_block.layers.3.input_layernorm.weight": "model-00004-of-00004.safetensors",
42
+ "model.audio_block.layers.3.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
43
+ "model.audio_block.layers.3.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
44
+ "model.audio_block.layers.3.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
45
+ "model.audio_block.layers.3.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
46
+ "model.audio_block.layers.3.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
47
+ "model.audio_block.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
48
+ "model.audio_block.layers.3.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
49
+ "model.audio_block.layers.3.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
50
+ "model.audio_block.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
51
+ "model.audio_block.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
52
+ "model.audio_embed.weight": "model-00001-of-00004.safetensors",
53
+ "model.audio_norm.weight": "model-00004-of-00004.safetensors",
54
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
55
+ "model.shared_block.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
56
+ "model.shared_block.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
57
+ "model.shared_block.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
58
+ "model.shared_block.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
59
+ "model.shared_block.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
60
+ "model.shared_block.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
61
+ "model.shared_block.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
62
+ "model.shared_block.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
63
+ "model.shared_block.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
64
+ "model.shared_block.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
65
+ "model.shared_block.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
66
+ "model.shared_block.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
67
+ "model.shared_block.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
68
+ "model.shared_block.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
69
+ "model.shared_block.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
70
+ "model.shared_block.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
71
+ "model.shared_block.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
72
+ "model.shared_block.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
73
+ "model.shared_block.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
74
+ "model.shared_block.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
75
+ "model.shared_block.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
76
+ "model.shared_block.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
77
+ "model.shared_block.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
78
+ "model.shared_block.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.shared_block.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.shared_block.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.shared_block.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.shared_block.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
83
+ "model.shared_block.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.shared_block.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.shared_block.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
86
+ "model.shared_block.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.shared_block.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.shared_block.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "model.shared_block.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.shared_block.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.shared_block.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.shared_block.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.shared_block.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
94
+ "model.shared_block.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.shared_block.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.shared_block.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
97
+ "model.shared_block.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.shared_block.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.shared_block.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.shared_block.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.shared_block.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.shared_block.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.shared_block.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.shared_block.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
105
+ "model.shared_block.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.shared_block.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.shared_block.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
108
+ "model.shared_block.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.shared_block.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.shared_block.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
111
+ "model.shared_block.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.shared_block.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.shared_block.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.shared_block.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
115
+ "model.shared_block.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
116
+ "model.shared_block.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.shared_block.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.shared_block.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
119
+ "model.shared_block.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.shared_block.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.shared_block.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "model.shared_block.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.shared_block.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.shared_block.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.shared_block.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
126
+ "model.shared_block.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
127
+ "model.shared_block.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.shared_block.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.shared_block.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
130
+ "model.shared_block.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.shared_block.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.shared_block.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
133
+ "model.shared_block.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.shared_block.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.shared_block.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.shared_block.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
137
+ "model.shared_block.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
138
+ "model.shared_block.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.shared_block.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.shared_block.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
141
+ "model.shared_block.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.shared_block.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.shared_block.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
144
+ "model.shared_block.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.shared_block.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
146
+ "model.shared_block.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.shared_block.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
148
+ "model.shared_block.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
149
+ "model.shared_block.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.shared_block.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.shared_block.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
152
+ "model.shared_block.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.shared_block.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.shared_block.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
155
+ "model.shared_block.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.shared_block.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
157
+ "model.shared_block.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.shared_block.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
159
+ "model.shared_block.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
160
+ "model.shared_block.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.shared_block.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.shared_block.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
163
+ "model.shared_block.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.shared_block.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.shared_block.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
166
+ "model.shared_block.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.shared_block.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
168
+ "model.shared_block.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.shared_block.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
170
+ "model.shared_block.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
171
+ "model.shared_block.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.shared_block.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.shared_block.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
174
+ "model.shared_block.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
175
+ "model.shared_block.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
176
+ "model.shared_block.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
177
+ "model.shared_block.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.shared_block.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.shared_block.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.shared_block.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
181
+ "model.shared_block.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
182
+ "model.shared_block.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.shared_block.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.shared_block.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
185
+ "model.shared_block.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
186
+ "model.shared_block.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.shared_block.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
188
+ "model.shared_block.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
189
+ "model.shared_block.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
190
+ "model.shared_block.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
191
+ "model.shared_block.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
192
+ "model.shared_block.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
193
+ "model.shared_block.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.shared_block.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.shared_block.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
196
+ "model.shared_block.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.shared_block.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.shared_block.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
199
+ "model.shared_block.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.shared_block.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
201
+ "model.shared_block.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
202
+ "model.shared_block.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
203
+ "model.shared_block.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
204
+ "model.shared_block.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
205
+ "model.shared_block.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
206
+ "model.shared_block.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
207
+ "model.shared_block.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
208
+ "model.shared_block.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
209
+ "model.shared_block.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
210
+ "model.shared_block.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
211
+ "model.shared_block.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
212
+ "model.shared_block.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
213
+ "model.shared_block.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
214
+ "model.shared_block.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
215
+ "model.shared_block.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
216
+ "model.shared_block.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
217
+ "model.shared_block.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
218
+ "model.shared_block.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.shared_block.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
220
+ "model.shared_block.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
221
+ "model.shared_block.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.shared_block.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.shared_block.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.shared_block.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.shared_block.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
226
+ "model.shared_block.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
227
+ "model.shared_block.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.shared_block.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
229
+ "model.shared_block.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
230
+ "model.shared_block.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
231
+ "model.shared_block.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
232
+ "model.shared_block.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.shared_block.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.shared_block.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.shared_block.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
236
+ "model.shared_block.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.shared_block.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.shared_block.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.shared_block.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
240
+ "model.shared_block.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.shared_block.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.shared_block.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
243
+ "model.shared_block.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.shared_block.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.shared_block.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.shared_block.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
247
+ "model.shared_block.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
248
+ "model.shared_block.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.shared_block.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.shared_block.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
251
+ "model.shared_block.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.shared_block.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.shared_block.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
254
+ "model.shared_block.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.shared_block.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.shared_block.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.shared_block.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
258
+ "model.shared_block.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
259
+ "model.shared_block.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.shared_block.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.shared_block.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
262
+ "model.shared_block.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.shared_block.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.shared_block.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.shared_block.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.shared_block.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.shared_block.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.shared_block.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
269
+ "model.shared_block.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
270
+ "model.shared_block.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.shared_block.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.shared_block.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
273
+ "model.shared_block.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.shared_block.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.shared_block.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
276
+ "model.shared_block.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.shared_block.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.shared_block.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.shared_block.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
280
+ "model.shared_block.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
281
+ "model.shared_block.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.shared_block.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.shared_block.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
284
+ "model.shared_block.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.shared_block.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.shared_block.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
287
+ "model.shared_block.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.shared_block.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
289
+ "model.shared_block.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.shared_block.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
291
+ "model.shared_block.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
292
+ "model.shared_block.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.shared_block.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.shared_block.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
295
+ "model.shared_block.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.shared_block.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.shared_block.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "model.shared_block.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.shared_block.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.shared_block.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.shared_block.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
302
+ "model.shared_block.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
303
+ "model.shared_block.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.shared_block.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.shared_block.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
306
+ "model.shared_block.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.shared_block.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.shared_block.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.shared_block.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.shared_block.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.shared_block.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.shared_block.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.shared_block.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
314
+ "model.shared_block.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.shared_block.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.shared_block.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
317
+ "model.shared_block.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.shared_block.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
319
+ "model.shared_block.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
320
+ "model.shared_block.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.shared_block.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
322
+ "model.shared_block.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.shared_block.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
324
+ "model.shared_block.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
325
+ "model.shared_block.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.shared_block.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.shared_block.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
328
+ "model.shared_block.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
329
+ "model.shared_block.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.shared_block.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
331
+ "model.shared_block.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
332
+ "model.shared_block.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
333
+ "model.shared_block.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.shared_block.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
335
+ "model.shared_block.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
336
+ "model.shared_block.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.shared_block.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.shared_block.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
339
+ "model.shared_block.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.shared_block.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
341
+ "model.shared_block.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
342
+ "model.shared_block.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.shared_block.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
344
+ "model.shared_block.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.shared_block.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
346
+ "model.shared_block.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
347
+ "model.shared_block.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.shared_block.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.shared_block.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
350
+ "model.shared_block.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.shared_block.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.shared_block.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
353
+ "model.shared_block.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.shared_block.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
355
+ "model.shared_block.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.shared_block.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
357
+ "model.shared_block.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
358
+ "model.shared_block.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.shared_block.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.shared_block.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
361
+ "model.shared_block.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.shared_block.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.shared_block.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
364
+ "model.shared_block.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.shared_block.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
366
+ "model.shared_block.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.shared_block.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
368
+ "model.shared_block.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
369
+ "model.shared_block.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.shared_block.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.shared_block.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
372
+ "model.shared_block.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.shared_block.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
374
+ "model.shared_block.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
375
+ "model.shared_block.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.shared_block.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
377
+ "model.shared_block.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.shared_block.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
379
+ "model.shared_block.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
380
+ "model.shared_block.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.shared_block.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.shared_block.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
383
+ "model.shared_block.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.shared_block.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.shared_block.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
386
+ "model.shared_block.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
387
+ "model.shared_block.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
388
+ "model.shared_block.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.shared_block.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
390
+ "model.shared_block.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
391
+ "model.shared_block.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.shared_block.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.shared_block.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
394
+ "model.shared_block.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
395
+ "model.shared_block.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.shared_block.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
397
+ "model.shared_block.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
398
+ "model.shared_block.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
399
+ "model.shared_block.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
400
+ "model.shared_block.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
401
+ "model.shared_block.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
402
+ "model.shared_block.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.shared_block.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.shared_block.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
405
+ "model.shared_block.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
406
+ "model.shared_block.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.text_block.layers.0.input_layernorm.weight": "model-00003-of-00004.safetensors",
408
+ "model.text_block.layers.0.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
409
+ "model.text_block.layers.0.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
410
+ "model.text_block.layers.0.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
411
+ "model.text_block.layers.0.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
412
+ "model.text_block.layers.0.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
413
+ "model.text_block.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
414
+ "model.text_block.layers.0.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
415
+ "model.text_block.layers.0.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
416
+ "model.text_block.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
417
+ "model.text_block.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
418
+ "model.text_block.layers.1.input_layernorm.weight": "model-00003-of-00004.safetensors",
419
+ "model.text_block.layers.1.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
420
+ "model.text_block.layers.1.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
421
+ "model.text_block.layers.1.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
422
+ "model.text_block.layers.1.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
423
+ "model.text_block.layers.1.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
424
+ "model.text_block.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
425
+ "model.text_block.layers.1.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
426
+ "model.text_block.layers.1.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
427
+ "model.text_block.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
428
+ "model.text_block.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
429
+ "model.text_block.layers.2.input_layernorm.weight": "model-00003-of-00004.safetensors",
430
+ "model.text_block.layers.2.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
431
+ "model.text_block.layers.2.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
432
+ "model.text_block.layers.2.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
433
+ "model.text_block.layers.2.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
434
+ "model.text_block.layers.2.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
435
+ "model.text_block.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
436
+ "model.text_block.layers.2.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
437
+ "model.text_block.layers.2.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
438
+ "model.text_block.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
439
+ "model.text_block.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
440
+ "model.text_block.layers.3.input_layernorm.weight": "model-00004-of-00004.safetensors",
441
+ "model.text_block.layers.3.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
442
+ "model.text_block.layers.3.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
443
+ "model.text_block.layers.3.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
444
+ "model.text_block.layers.3.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
445
+ "model.text_block.layers.3.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
446
+ "model.text_block.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
447
+ "model.text_block.layers.3.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
448
+ "model.text_block.layers.3.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
449
+ "model.text_block.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
450
+ "model.text_block.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
451
+ "model.text_norm.weight": "model-00004-of-00004.safetensors",
452
+ "text_lm_head.weight": "model-00004-of-00004.safetensors"
453
+ }
454
+ }
modeling_moss_speech.py ADDED
@@ -0,0 +1,1132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 OpenMOSS and HuggingFace Inc. teams. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import copy
17
+ from dataclasses import dataclass
18
+ from typing import Any, Callable, Optional, Union
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.cache_utils import Cache, DynamicCache
25
+ from transformers.generation import GenerationMixin
26
+ from transformers.generation.configuration_utils import GenerationConfig
27
+ from transformers.generation.logits_process import (
28
+ LogitsProcessorList,
29
+ RepetitionPenaltyLogitsProcessor,
30
+ TemperatureLogitsWarper,
31
+ TopKLogitsWarper,
32
+ TopPLogitsWarper,
33
+ )
34
+ from transformers.generation.stopping_criteria import StoppingCriteriaList
35
+ from transformers.generation.streamers import BaseStreamer
36
+ from transformers.generation.utils import GenerateDecoderOnlyOutput
37
+ from transformers.integrations import use_kernel_forward_from_hub
38
+ from transformers.masking_utils import (
39
+ create_causal_mask,
40
+ create_sliding_window_causal_mask,
41
+ )
42
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
43
+ from transformers.modeling_layers import (
44
+ GenericForQuestionAnswering,
45
+ GenericForSequenceClassification,
46
+ GenericForTokenClassification,
47
+ GradientCheckpointingLayer,
48
+ )
49
+ from transformers.modeling_outputs import (
50
+ ModelOutput,
51
+ )
52
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
53
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
54
+ from transformers.processing_utils import Unpack
55
+ from transformers.pytorch_utils import isin_mps_friendly
56
+ from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
57
+ from transformers.utils.deprecation import deprecate_kwarg
58
+ from transformers.utils.generic import check_model_inputs
59
+
60
+ from .configuration_moss_speech import MossSpeechConfig
61
+
62
+
63
+ @dataclass
64
+ class MossSpeechModelOutputWithPast(ModelOutput):
65
+ """MossSpeech model output that includes per-modality last_hidden_state dict
66
+
67
+ Args:
68
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
69
+ Sequence of hidden-states at the output of the last layer of the model.
70
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed
71
+ or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with
72
+ each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`.
73
+ last_hidden_state_dict (`Dict[str, torch.FloatTensor]`, *optional*):
74
+ Dictionary containing hidden states for each modality. Keys are modality names (e.g., "text", "audio")
75
+ and values are tensors of shape `(batch_size, sequence_length, hidden_size)`.
76
+ attentions (`tuple(torch.FloatTensor)`, *optional*):
77
+ Tuple of `torch.FloatTensor` (one for each layer) of shape
78
+ `(batch_size, num_heads, sequence_length, sequence_length)`.
79
+ """
80
+
81
+ last_hidden_state: torch.FloatTensor = None
82
+ past_key_values: Optional[tuple] = None
83
+ hidden_states: Optional[tuple] = None
84
+ attentions: Optional[tuple] = None
85
+ last_hidden_state_dict: Optional[dict[str, torch.Tensor]] = None
86
+ past_key_values_dict: Optional[dict] = None
87
+
88
+
89
+ @dataclass
90
+ class MossSpeechCausalLMOutputWithPast(ModelOutput):
91
+ """MossSpeech causal language modeling output, includes per-modality hidden_states dict
92
+
93
+ Args:
94
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
95
+ Language modeling loss (for next-token prediction).
96
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
97
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
98
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
99
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
100
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
101
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
102
+ `past_key_values` input) to speed up sequential decoding.
103
+ hidden_states (`Dict[str, torch.FloatTensor]`, *optional*):
104
+ Dictionary containing hidden states for each modality. Keys are modality names (e.g., "text", "audio")
105
+ and values are tensors of shape `(batch_size, sequence_length, hidden_size)`.
106
+ attentions (`tuple(torch.FloatTensor)`, *optional*):
107
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
108
+ """
109
+
110
+ hidden_states: Optional[dict[str, torch.Tensor]] = None
111
+ past_key_values: Optional[tuple] = None
112
+ attentions: Optional[tuple] = None
113
+ last_hidden_state_dict: Optional[dict[str, torch.Tensor]] = None
114
+ audio_loss: Optional[torch.FloatTensor] = None
115
+ audio_logits: Optional[torch.FloatTensor] = None
116
+ text_loss: Optional[torch.FloatTensor] = None
117
+ text_logits: Optional[torch.FloatTensor] = None
118
+ text_hidden_states: Optional[torch.FloatTensor] = None
119
+ audio_hidden_states: Optional[torch.FloatTensor] = None
120
+ logits_all: Optional[tuple] = None
121
+ past_key_values_dict: Optional[dict] = None
122
+
123
+
124
+ @use_kernel_forward_from_hub("RMSNorm")
125
+ class MossSpeechRMSNorm(nn.Module):
126
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MossSpeech
127
+ def __init__(self, hidden_size, eps: float = 1e-6) -> None:
128
+ """Root Mean Square LayerNorm used in MossSpeech."""
129
+ super().__init__()
130
+ self.weight = nn.Parameter(torch.ones(hidden_size))
131
+ self.variance_epsilon = eps
132
+
133
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
134
+ input_dtype = hidden_states.dtype
135
+ hidden_states = hidden_states.to(torch.float32)
136
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
137
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
138
+ return self.weight * hidden_states.to(input_dtype)
139
+
140
+ def extra_repr(self):
141
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
142
+
143
+
144
+ class MossSpeechMLP(nn.Module):
145
+ def __init__(self, config):
146
+ super().__init__()
147
+ self.config = config
148
+ self.hidden_size = config.hidden_size
149
+ self.intermediate_size = config.intermediate_size
150
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
151
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
152
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
153
+ self.act_fn = ACT2FN[config.hidden_act]
154
+
155
+ def forward(self, x):
156
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
157
+ return down_proj
158
+
159
+
160
+ def rotate_half(x):
161
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
162
+ """Rotate half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
170
+ """Apply Rotary Position Embeddings to the query and key tensors.
171
+
172
+ Args:
173
+ q (`torch.Tensor`): The query tensor.
174
+ k (`torch.Tensor`): The key tensor.
175
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
176
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
177
+ position_ids (`torch.Tensor`, *optional*): Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ Dimension along which to unsqueeze cos[position_ids] and sin[position_ids] for broadcasting to `q`/`k`.
180
+ Returns:
181
+ `tuple(torch.Tensor)` comprising of the rotated query and key tensors.
182
+ """
183
+ cos = cos.unsqueeze(unsqueeze_dim)
184
+ sin = sin.unsqueeze(unsqueeze_dim)
185
+ q_embed = (q * cos) + (rotate_half(q) * sin)
186
+ k_embed = (k * cos) + (rotate_half(k) * sin)
187
+ return q_embed, k_embed
188
+
189
+
190
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
191
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
192
+ """Repeat key/value heads to match attention heads.
193
+
194
+ Equivalent to `torch.repeat_interleave(x, dim=1, repeats=n_rep)` transforming
195
+ (batch, num_key_value_heads, seqlen, head_dim) -> (batch, num_attention_heads, seqlen, head_dim).
196
+ """
197
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
198
+ if n_rep == 1:
199
+ return hidden_states
200
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
201
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
202
+
203
+
204
+ def eager_attention_forward(
205
+ module: nn.Module,
206
+ query: torch.Tensor,
207
+ key: torch.Tensor,
208
+ value: torch.Tensor,
209
+ attention_mask: Optional[torch.Tensor],
210
+ scaling: float,
211
+ dropout: float = 0.0,
212
+ **kwargs: Unpack[TransformersKwargs],
213
+ ):
214
+ # Copied from transformers.models.llama.modeling_llama.eager_attention_forward
215
+ key_states = repeat_kv(key, module.num_key_value_groups)
216
+ value_states = repeat_kv(value, module.num_key_value_groups)
217
+
218
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
219
+ if attention_mask is not None:
220
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
221
+ attn_weights = attn_weights + causal_mask
222
+
223
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
224
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
225
+ attn_output = torch.matmul(attn_weights, value_states)
226
+ attn_output = attn_output.transpose(1, 2).contiguous()
227
+
228
+ return attn_output, attn_weights
229
+
230
+
231
+ class MossSpeechAttention(nn.Module):
232
+ """Multi-headed attention from 'Attention Is All You Need'."""
233
+
234
+ def __init__(self, config: MossSpeechConfig, layer_idx: int):
235
+ super().__init__()
236
+ self.config = config
237
+ self.layer_idx = layer_idx
238
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
239
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
240
+ self.scaling = self.head_dim**-0.5
241
+ self.attention_dropout = config.attention_dropout
242
+ self.is_causal = True
243
+
244
+ self.q_proj = nn.Linear(
245
+ config.hidden_size,
246
+ config.num_attention_heads * self.head_dim,
247
+ bias=config.attention_bias,
248
+ )
249
+ self.k_proj = nn.Linear(
250
+ config.hidden_size,
251
+ config.num_key_value_heads * self.head_dim,
252
+ bias=config.attention_bias,
253
+ )
254
+ self.v_proj = nn.Linear(
255
+ config.hidden_size,
256
+ config.num_key_value_heads * self.head_dim,
257
+ bias=config.attention_bias,
258
+ )
259
+ self.o_proj = nn.Linear(
260
+ config.num_attention_heads * self.head_dim,
261
+ config.hidden_size,
262
+ bias=config.attention_bias,
263
+ )
264
+ self.q_norm = MossSpeechRMSNorm(self.head_dim, eps=config.rms_norm_eps)
265
+ self.k_norm = MossSpeechRMSNorm(self.head_dim, eps=config.rms_norm_eps)
266
+ self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
267
+
268
+ @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
269
+ def forward(
270
+ self,
271
+ hidden_states: torch.Tensor,
272
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
273
+ attention_mask: Optional[torch.Tensor],
274
+ past_key_values: Optional[Cache] = None,
275
+ cache_position: Optional[torch.LongTensor] = None,
276
+ **kwargs: Unpack[FlashAttentionKwargs],
277
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
278
+ input_shape = hidden_states.shape[:-1]
279
+ hidden_shape = (*input_shape, -1, self.head_dim)
280
+
281
+ query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
282
+ key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
283
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
284
+
285
+ cos, sin = position_embeddings
286
+
287
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
288
+ if past_key_values is not None:
289
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
290
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
291
+ key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
292
+
293
+ attention_interface: Callable = eager_attention_forward
294
+ if self.config._attn_implementation != "eager":
295
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
296
+
297
+ attn_output, attn_weights = attention_interface(
298
+ self,
299
+ query_states,
300
+ key_states,
301
+ value_states,
302
+ attention_mask,
303
+ dropout=0.0 if not self.training else self.attention_dropout,
304
+ scaling=self.scaling,
305
+ sliding_window=self.sliding_window,
306
+ **kwargs,
307
+ )
308
+
309
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
310
+ attn_output = self.o_proj(attn_output)
311
+ return attn_output, attn_weights
312
+
313
+
314
+ class MossSpeechDecoderLayer(GradientCheckpointingLayer):
315
+ """Single decoder layer used in the MossSpeech transformer."""
316
+
317
+ def __init__(self, config: MossSpeechConfig, layer_idx: int):
318
+ super().__init__()
319
+ self.hidden_size = config.hidden_size
320
+
321
+ self.self_attn = MossSpeechAttention(config=config, layer_idx=layer_idx)
322
+
323
+ self.mlp = MossSpeechMLP(config)
324
+ self.input_layernorm = MossSpeechRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
325
+ self.post_attention_layernorm = MossSpeechRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
326
+ self.attention_type = config.layer_types[layer_idx]
327
+
328
+ @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
329
+ def forward(
330
+ self,
331
+ hidden_states: torch.Tensor,
332
+ attention_mask: Optional[torch.Tensor] = None,
333
+ position_ids: Optional[torch.LongTensor] = None,
334
+ past_key_values: Optional[Cache] = None,
335
+ use_cache: Optional[bool] = False,
336
+ cache_position: Optional[torch.LongTensor] = None,
337
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
338
+ **kwargs: Unpack[TransformersKwargs],
339
+ ) -> torch.Tensor:
340
+ residual = hidden_states
341
+ hidden_states = self.input_layernorm(hidden_states)
342
+ # Self Attention
343
+ hidden_states, _ = self.self_attn(
344
+ hidden_states=hidden_states,
345
+ attention_mask=attention_mask,
346
+ position_ids=position_ids,
347
+ past_key_values=past_key_values,
348
+ use_cache=use_cache,
349
+ cache_position=cache_position,
350
+ position_embeddings=position_embeddings,
351
+ **kwargs,
352
+ )
353
+ hidden_states = residual + hidden_states
354
+
355
+ # Fully Connected
356
+ residual = hidden_states
357
+ hidden_states = self.post_attention_layernorm(hidden_states)
358
+ hidden_states = self.mlp(hidden_states)
359
+ hidden_states = residual + hidden_states
360
+ return hidden_states
361
+
362
+
363
+ class MossSpeechTransformerBlock(nn.Module):
364
+ """A contiguous stack of decoder layers that handles attention types and cache offsets."""
365
+
366
+ def __init__(self, config: MossSpeechConfig, start_idx: int, num_layers: int):
367
+ super().__init__()
368
+ self.start_idx = start_idx
369
+ self.num_layers = num_layers
370
+ self.layers = nn.ModuleList(
371
+ [MossSpeechDecoderLayer(config, layer_idx=start_idx + i) for i in range(num_layers)]
372
+ )
373
+ self.config = config
374
+ self.has_sliding_layers = "sliding_attention" in config.layer_types
375
+
376
+ def _mask_for_layer(self, causal_masks: dict[str, torch.Tensor], layer_type: str) -> torch.Tensor:
377
+ return causal_masks[("sliding_attention" if layer_type == "sliding_attention" else "full_attention")]
378
+
379
+ def forward(
380
+ self,
381
+ hidden_states: torch.Tensor,
382
+ *,
383
+ causal_masks: dict[str, torch.Tensor],
384
+ position_ids: torch.LongTensor,
385
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
386
+ past_key_values: Optional[Cache],
387
+ use_cache: bool,
388
+ cache_position: torch.LongTensor,
389
+ **kwargs: Unpack[TransformersKwargs],
390
+ ) -> torch.Tensor:
391
+ for i, decoder_layer in enumerate(self.layers):
392
+ layer_type = self.config.layer_types[self.start_idx + i]
393
+ hidden_states = decoder_layer(
394
+ hidden_states,
395
+ attention_mask=self._mask_for_layer(causal_masks, layer_type),
396
+ position_ids=position_ids,
397
+ past_key_values=past_key_values,
398
+ use_cache=use_cache,
399
+ cache_position=cache_position,
400
+ position_embeddings=position_embeddings,
401
+ **kwargs,
402
+ )
403
+ return hidden_states
404
+
405
+
406
+ @auto_docstring
407
+ class MossSpeechPreTrainedModel(PreTrainedModel):
408
+ config: MossSpeechConfig
409
+ base_model_prefix = "model"
410
+ supports_gradient_checkpointing = True
411
+ _no_split_modules = ["MossSpeechDecoderLayer"]
412
+ _skip_keys_device_placement = ["past_key_values"]
413
+ _supports_flash_attn = True
414
+ _supports_sdpa = True
415
+ _supports_flex_attn = True
416
+
417
+ _can_compile_fullgraph = True
418
+ _supports_attention_backend = True
419
+ _can_record_outputs = {
420
+ "hidden_states": MossSpeechDecoderLayer,
421
+ "attentions": MossSpeechAttention,
422
+ }
423
+
424
+
425
+ class MossSpeechRotaryEmbedding(nn.Module):
426
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
427
+
428
+ def __init__(self, config: MossSpeechConfig, device=None):
429
+ super().__init__()
430
+ # BC: "rope_type" was originally "type"
431
+ if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
432
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
433
+ else:
434
+ self.rope_type = "default"
435
+ self.max_seq_len_cached = config.max_position_embeddings
436
+ self.original_max_seq_len = config.max_position_embeddings
437
+
438
+ self.config = config
439
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
440
+
441
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
442
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
443
+ self.original_inv_freq = self.inv_freq
444
+
445
+ @torch.no_grad()
446
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
447
+ def forward(self, x, position_ids):
448
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
449
+ position_ids_expanded = position_ids[:, None, :].float()
450
+
451
+ seq_len = position_ids_expanded.max().item() + 1
452
+ if seq_len > self.max_seq_len_cached:
453
+ self.max_seq_len_cached = int(seq_len)
454
+
455
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
456
+
457
+ with torch.autocast(device_type=device_type, enabled=False):
458
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
459
+ emb = torch.cat((freqs, freqs), dim=-1)
460
+ cos = emb.cos() * self.attention_scaling
461
+ sin = emb.sin() * self.attention_scaling
462
+
463
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
464
+
465
+
466
+ class MossSpeechModel(MossSpeechPreTrainedModel):
467
+ """The bare MossSpeech decoder-only Transformer with shared and modality-specific blocks.
468
+
469
+ This model outputs a dictionary of per-modality hidden states in addition to the shared hidden states.
470
+ """
471
+
472
+ def __init__(self, config: MossSpeechConfig):
473
+ super().__init__(config)
474
+ pad_idx = (
475
+ config.pad_token_id if getattr(config, "pad_token_id", None) is not None else config.modality_pad_token_id
476
+ )
477
+ self.padding_idx = pad_idx
478
+ self.vocab_size = config.vocab_size
479
+
480
+ # Shared embed + trunk
481
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
482
+ self.audio_embed = nn.Embedding(config.audio_vocab_size, config.hidden_size)
483
+ self.rotary_emb = MossSpeechRotaryEmbedding(config)
484
+ self.gradient_checkpointing = False
485
+ self.has_sliding_layers = "sliding_attention" in config.layer_types
486
+
487
+ self.shared_block = MossSpeechTransformerBlock(config, start_idx=0, num_layers=config.num_shared_layers)
488
+
489
+ # Modality-specific blocks (route after the shared trunk)
490
+ self.text_block = MossSpeechTransformerBlock(
491
+ config,
492
+ start_idx=0,
493
+ num_layers=config.num_modality_layers,
494
+ )
495
+ self.audio_block = MossSpeechTransformerBlock(
496
+ config,
497
+ start_idx=0,
498
+ num_layers=config.num_modality_layers,
499
+ )
500
+
501
+ # Modality-specific final norms
502
+ self.text_norm = MossSpeechRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
503
+ self.audio_norm = MossSpeechRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
504
+
505
+ # register
506
+ self.modality_blocks = nn.ModuleDict(
507
+ {
508
+ "text": self.text_block,
509
+ "audio": self.audio_block,
510
+ }
511
+ )
512
+ self.modality_norms = nn.ModuleDict(
513
+ {
514
+ "text": self.text_norm,
515
+ "audio": self.audio_norm,
516
+ }
517
+ )
518
+
519
+ # Initialize weights and apply final processing
520
+ self.post_init()
521
+
522
+ def _route_block(self, modality: str):
523
+ """Return the Transformer block for the given modality."""
524
+ if modality in self.modality_blocks:
525
+ return self.modality_blocks[modality]
526
+ else:
527
+ raise ValueError(f"Unknown modality: {modality}")
528
+
529
+ def _route_final_layer_norm(self, modality: str):
530
+ """Return the final layer normalization for the given modality."""
531
+ if modality in self.modality_norms:
532
+ return self.modality_norms[modality]
533
+ else:
534
+ raise ValueError(f"Unknown modality: {modality}")
535
+
536
+ @check_model_inputs
537
+ @auto_docstring
538
+ def forward(
539
+ self,
540
+ modalities: list[str],
541
+ input_ids: Optional[torch.LongTensor] = None,
542
+ attention_mask: Optional[torch.Tensor] = None,
543
+ position_ids: Optional[torch.LongTensor] = None,
544
+ past_key_values: Optional[dict] = None,
545
+ past_key_values_dict: Optional[dict] = None,
546
+ inputs_embeds: Optional[torch.FloatTensor] = None,
547
+ use_cache: Optional[bool] = None,
548
+ cache_position: Optional[torch.LongTensor] = None,
549
+ **kwargs: Unpack[TransformersKwargs],
550
+ ) -> MossSpeechModelOutputWithPast:
551
+ r"""
552
+ Args:
553
+ modalities (List[str]): Modalities to compute in this forward pass.
554
+ past_key_values_dict (Optional[dict]): KV cache per block when using `use_cache=True`.
555
+ """
556
+
557
+ if (input_ids is None) ^ (inputs_embeds is not None):
558
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
559
+
560
+ if inputs_embeds is None:
561
+ if input_ids is None:
562
+ raise ValueError("require input_ids (packed or text-only)")
563
+
564
+ if input_ids.dim() == 3 and input_ids.shape[1] == 2:
565
+ text_ids = input_ids[:, 0, :]
566
+ audio_ids_packed = input_ids[:, 1, :]
567
+ pad_id = int(getattr(self.config, "modality_pad_token_id", 0))
568
+ if pad_id == 0:
569
+ raise ValueError("Expected a non-zero modality_pad_token_id for packed inputs")
570
+ # Safely replace pad tokens before embedding lookup
571
+ text_ids_safe = text_ids.masked_fill(text_ids == pad_id, 0)
572
+
573
+ text_embeds = self.embed_tokens(text_ids_safe)
574
+ audio_embeds = self.audio_embed(audio_ids_packed)
575
+ selection_mask = (text_ids != pad_id).unsqueeze(-1).to(dtype=text_embeds.dtype)
576
+ inputs_embeds = text_embeds * selection_mask + audio_embeds * (1 - selection_mask)
577
+ elif input_ids.dim() == 2:
578
+ # text-only input
579
+ inputs_embeds = self.embed_tokens(input_ids)
580
+ else:
581
+ raise ValueError("invalid inputs for embedding construction")
582
+
583
+ past_key_values_dict = {} if past_key_values_dict is None else dict(past_key_values_dict)
584
+
585
+ shared_cache: Optional[Cache] = None
586
+ if isinstance(past_key_values, dict):
587
+ # Accept dictionaries passed via either `past_key_values` or `past_key_values_dict`.
588
+ past_key_values_dict.update(past_key_values)
589
+ shared_cache = past_key_values.get("shared")
590
+ elif isinstance(past_key_values, Cache):
591
+ shared_cache = past_key_values
592
+ elif past_key_values is not None:
593
+ raise TypeError("past_key_values must be either a Cache instance, a dict of caches, or None")
594
+
595
+ if shared_cache is None:
596
+ shared_cache = past_key_values_dict.get("shared")
597
+
598
+ if use_cache:
599
+ if shared_cache is None:
600
+ shared_cache_config = copy.deepcopy(self.config)
601
+ shared_cache_config.layer_types = shared_cache_config.layer_types[: self.config.num_shared_layers]
602
+ shared_cache = DynamicCache(config=shared_cache_config)
603
+
604
+ past_key_values_dict = dict(past_key_values_dict)
605
+ past_key_values_dict["shared"] = shared_cache
606
+
607
+ for modality in self.modality_blocks:
608
+ cache = past_key_values_dict.get(modality)
609
+ if not isinstance(cache, Cache):
610
+ modality_config = copy.deepcopy(self.config)
611
+ modality_config.layer_types = modality_config.layer_types[-self.config.num_modality_layers :]
612
+ past_key_values_dict[modality] = DynamicCache(config=modality_config)
613
+ else:
614
+ shared_cache = None
615
+
616
+ if cache_position is None:
617
+ past_seen_tokens = 0
618
+ if isinstance(shared_cache, Cache):
619
+ past_seen_tokens = shared_cache.get_seq_length()
620
+ cache_position = torch.arange(
621
+ past_seen_tokens,
622
+ past_seen_tokens + inputs_embeds.shape[1],
623
+ device=inputs_embeds.device,
624
+ )
625
+
626
+ if position_ids is None:
627
+ position_ids = cache_position.unsqueeze(0)
628
+
629
+ # It may already have been prepared by e.g. `generate`
630
+ if not isinstance(causal_mask_mapping := attention_mask, dict):
631
+ # Prepare mask arguments
632
+ # For mask creation, we use the shared cache or None
633
+ mask_past_key_values = shared_cache if isinstance(shared_cache, Cache) else None
634
+ # attention_mask = None
635
+ mask_kwargs = {
636
+ "config": self.config,
637
+ "input_embeds": inputs_embeds,
638
+ "attention_mask": attention_mask,
639
+ "cache_position": cache_position,
640
+ "past_key_values": mask_past_key_values,
641
+ "position_ids": position_ids,
642
+ }
643
+
644
+ # Create the masks
645
+ causal_mask_mapping = {
646
+ "full_attention": create_causal_mask(**mask_kwargs),
647
+ }
648
+ # The sliding window alternating layers are not always activated depending on the config
649
+ if self.has_sliding_layers:
650
+ causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
651
+
652
+ hidden_states = inputs_embeds
653
+
654
+ # create position embeddings to be shared across the decoder layers
655
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
656
+
657
+ # shared block
658
+ hidden_states = self.shared_block(
659
+ hidden_states,
660
+ causal_masks=causal_mask_mapping,
661
+ position_ids=position_ids,
662
+ position_embeddings=position_embeddings,
663
+ past_key_values=shared_cache if use_cache else None,
664
+ use_cache=bool(use_cache),
665
+ cache_position=cache_position,
666
+ **kwargs,
667
+ )
668
+
669
+ # Compute hidden states for each modality
670
+ last_hidden_state_dict = {}
671
+ for modality in modalities:
672
+ mod_block = self._route_block(modality)
673
+ mod_norm = self._route_final_layer_norm(modality)
674
+ mod_cache = past_key_values_dict.get(modality) if use_cache else None
675
+
676
+ # Build modality-specific hidden_states starting from the same shared input
677
+ mod_hidden_states = mod_block(
678
+ hidden_states,
679
+ causal_masks=causal_mask_mapping,
680
+ position_ids=position_ids,
681
+ position_embeddings=position_embeddings,
682
+ past_key_values=mod_cache,
683
+ use_cache=bool(use_cache),
684
+ cache_position=cache_position,
685
+ **kwargs,
686
+ )
687
+ mod_hidden_states = mod_norm(mod_hidden_states)
688
+ last_hidden_state_dict[modality] = mod_hidden_states
689
+
690
+ return MossSpeechModelOutputWithPast(
691
+ last_hidden_state=hidden_states,
692
+ last_hidden_state_dict=last_hidden_state_dict,
693
+ past_key_values=shared_cache if use_cache else None,
694
+ past_key_values_dict=past_key_values_dict if use_cache else None,
695
+ )
696
+
697
+
698
+ class MossSpeechGenerationMixin(GenerationMixin):
699
+ """Generation mixin for MossSpeech model with two-channel (text/audio) support."""
700
+
701
+ def _setup_processors(self, generation_config: GenerationConfig, modalities: int) -> list[LogitsProcessorList]:
702
+ """Setup per-channel logits processors based on the generation config."""
703
+ realprocessor = [LogitsProcessorList() for _ in range(modalities)]
704
+
705
+ if hasattr(generation_config, "layers"):
706
+ for i, layer_config in enumerate(generation_config.layers):
707
+ if i >= len(realprocessor):
708
+ break
709
+
710
+ if layer_config.get("repetition_penalty") is not None:
711
+ realprocessor[i].append(
712
+ RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty"))
713
+ )
714
+ if layer_config.get("temperature") is not None:
715
+ realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
716
+ if layer_config.get("top_k") is not None:
717
+ realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
718
+ if layer_config.get("top_p") is not None:
719
+ realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
720
+
721
+ return realprocessor
722
+
723
+ def _generate_next_tokens_with_scores(
724
+ self,
725
+ logits_all: tuple[torch.Tensor, ...],
726
+ input_ids: torch.LongTensor,
727
+ realprocessor: list[LogitsProcessorList],
728
+ do_samples: list[bool],
729
+ generation_config: GenerationConfig,
730
+ generating_length: int,
731
+ ) -> tuple[torch.LongTensor, tuple[torch.Tensor, ...], tuple[torch.Tensor, ...]]:
732
+ """Generate next tokens for all channels with scores and logits."""
733
+ # Get next token logits
734
+ next_token_logits = tuple(logits[:, -1, :].clone().float().to(input_ids.device) for logits in logits_all)
735
+
736
+ # Apply audio-channel-specific constraints
737
+ next_token_logits[1][:, 16385:] = -torch.inf
738
+ if hasattr(generation_config, "min_new_tokens") and generating_length < generation_config.min_new_tokens:
739
+ next_token_logits[1][:, 16384] = -torch.inf
740
+
741
+ # Process logits
742
+ next_token_scores = tuple(
743
+ realprocessor[i](input_ids[:, :, i], logits) for i, logits in enumerate(next_token_logits)
744
+ )
745
+
746
+ # Sample or select tokens
747
+ next_tokens = []
748
+ for i, channel_score in enumerate(next_token_scores):
749
+ if do_samples[i]:
750
+ channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1)
751
+ else:
752
+ channel_ntk = torch.argmax(channel_score, dim=-1)
753
+ next_tokens.append(channel_ntk)
754
+
755
+ return torch.stack(next_tokens, dim=-1), next_token_scores, next_token_logits
756
+
757
+ def _process_multi_modality_tokens(
758
+ self,
759
+ next_tokens: torch.LongTensor,
760
+ current_modality: torch.Tensor,
761
+ modality_pad_token: Union[int, torch.Tensor],
762
+ ) -> torch.LongTensor:
763
+ """Process tokens for MossSpeech generation."""
764
+
765
+ mask = current_modality == 1
766
+ if mask.any():
767
+ pad_value = modality_pad_token.item() if torch.is_tensor(modality_pad_token) else modality_pad_token
768
+ next_tokens[mask, 0] = int(pad_value)
769
+
770
+ return next_tokens
771
+
772
+ def _sample(
773
+ self,
774
+ input_ids: torch.LongTensor,
775
+ logits_processor: LogitsProcessorList,
776
+ stopping_criteria: StoppingCriteriaList,
777
+ generation_config: GenerationConfig,
778
+ synced_gpus: bool,
779
+ streamer: Optional[BaseStreamer],
780
+ **model_kwargs,
781
+ ) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]:
782
+ """Sampling implementation for MossSpeech with text and audio modalities."""
783
+
784
+ # Determine the pad token used to mask the text channel when the audio modality is active.
785
+ modality_pad_token = generation_config._pad_token_tensor
786
+ if modality_pad_token is None:
787
+ pad_fallback = getattr(self.config, "modality_pad_token_id", None)
788
+ if pad_fallback is None:
789
+ pad_fallback = getattr(self.config, "pad_token_id", None)
790
+ if pad_fallback is None:
791
+ raise ValueError(
792
+ "MossSpeech generation requires a pad token id; please set it on the config or generation config."
793
+ )
794
+ modality_pad_token = torch.tensor(
795
+ pad_fallback,
796
+ device=input_ids.device,
797
+ dtype=input_ids.dtype,
798
+ )
799
+ else:
800
+ modality_pad_token = modality_pad_token.to(device=input_ids.device, dtype=input_ids.dtype)
801
+
802
+ audio_pad_token_id = getattr(self.config, "audio_pad_token_id", None)
803
+ sosp_token_id = getattr(self.config, "sosp_token_id", None)
804
+ eosp_token_id = getattr(self.config, "eosp_token_id", None)
805
+
806
+ output_attentions = generation_config.output_attentions
807
+ output_hidden_states = generation_config.output_hidden_states
808
+ output_scores = generation_config.output_scores
809
+ output_logits = generation_config.output_logits
810
+ return_dict_in_generate = generation_config.return_dict_in_generate
811
+ global_do_sample = generation_config.do_sample
812
+
813
+ scores = () if (return_dict_in_generate and output_scores) else None
814
+ raw_logits = () if (return_dict_in_generate and output_logits) else None
815
+ decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
816
+ decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
817
+
818
+ batch_size, cur_len, input_modalities = input_ids.shape
819
+ this_peer_finished = False
820
+ unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
821
+
822
+ model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
823
+
824
+ if hasattr(generation_config, "do_samples") and generation_config.do_samples is not None:
825
+ per_modality_do_sample = generation_config.do_samples
826
+ logits_processors = self._setup_processors(generation_config, input_modalities)
827
+ else:
828
+ per_modality_do_sample = [global_do_sample for _ in range(input_modalities)]
829
+ logits_processors = [logits_processor for _ in range(input_modalities)]
830
+
831
+ current_modality = torch.zeros((batch_size,), dtype=torch.long, device=input_ids.device)
832
+
833
+ # Infer starting modality: text channel uses index 0, audio channel index 1
834
+ if self.config.modality_pad_token_id is not None:
835
+ audio_mask = input_ids[:, -1, 0] == self.config.modality_pad_token_id
836
+ current_modality[audio_mask] = 1
837
+ if audio_pad_token_id is not None:
838
+ text_mask = input_ids[:, -1, 1] == audio_pad_token_id
839
+ current_modality[text_mask] = 0
840
+
841
+ generating_length = 0
842
+ while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
843
+ generating_length += 1
844
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
845
+ if output_attentions:
846
+ model_inputs["output_attentions"] = output_attentions
847
+ if output_hidden_states:
848
+ model_inputs["output_hidden_states"] = output_hidden_states
849
+ if "past_key_values_dict" in model_kwargs:
850
+ model_inputs["past_key_values_dict"] = model_kwargs["past_key_values_dict"]
851
+
852
+ if sosp_token_id is not None:
853
+ text_mode_mask = current_modality == 0
854
+ text_to_audio_mask = text_mode_mask & (input_ids[:, -1, 0] == sosp_token_id)
855
+ current_modality[text_to_audio_mask] = 1
856
+ if eosp_token_id is not None:
857
+ audio_mode_mask = current_modality == 1
858
+ audio_to_text_mask = audio_mode_mask & (input_ids[:, -1, 1] == eosp_token_id)
859
+ current_modality[audio_to_text_mask] = 0
860
+
861
+ outputs = self(**model_inputs, return_dict=True)
862
+ model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
863
+ if outputs.past_key_values_dict is not None:
864
+ model_kwargs["past_key_values_dict"] = outputs.past_key_values_dict
865
+
866
+ if synced_gpus and this_peer_finished:
867
+ continue
868
+
869
+ next_tokens, next_token_scores, next_token_logits = self._generate_next_tokens_with_scores(
870
+ outputs.logits_all,
871
+ input_ids,
872
+ logits_processors,
873
+ per_modality_do_sample,
874
+ generation_config,
875
+ generating_length,
876
+ )
877
+ next_tokens = self._process_multi_modality_tokens(
878
+ next_tokens,
879
+ current_modality,
880
+ modality_pad_token,
881
+ )
882
+
883
+ input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1)
884
+ if streamer is not None:
885
+ streamer.put(next_tokens[:, 0].cpu())
886
+
887
+ stopping = stopping_criteria(input_ids[:, :, 0], scores)
888
+
889
+ unfinished_sequences = unfinished_sequences & ~stopping
890
+ this_peer_finished = unfinished_sequences.max() == 0
891
+
892
+ if return_dict_in_generate:
893
+ if output_scores:
894
+ scores += (next_token_scores,)
895
+ if output_logits:
896
+ raw_logits += (next_token_logits,)
897
+ if output_attentions:
898
+ decoder_attentions += (outputs.attentions,)
899
+ if output_hidden_states:
900
+ decoder_hidden_states += (outputs.hidden_states,)
901
+
902
+ cur_len += 1
903
+
904
+ if streamer is not None:
905
+ streamer.end()
906
+
907
+ if return_dict_in_generate:
908
+ return GenerateDecoderOnlyOutput(
909
+ sequences=input_ids,
910
+ scores=scores,
911
+ logits=raw_logits,
912
+ attentions=decoder_attentions,
913
+ hidden_states=decoder_hidden_states,
914
+ past_key_values=model_kwargs.get("past_key_values"),
915
+ )
916
+
917
+ return input_ids
918
+
919
+ def generate(
920
+ self,
921
+ input_ids: Optional[torch.Tensor] = None,
922
+ output_only: bool = True,
923
+ **kwargs,
924
+ ):
925
+ batch_size, seq_len, modalities = input_ids.shape
926
+ start_id = seq_len
927
+ outputs = super().generate(input_ids, **kwargs)
928
+ return_dict_in_generate = kwargs.get("return_dict_in_generate", False)
929
+ if return_dict_in_generate:
930
+ output_ids = outputs["sequences"]
931
+ else:
932
+ output_ids = outputs
933
+ if output_only:
934
+ output_ids = output_ids[:, start_id:, :]
935
+ if return_dict_in_generate:
936
+ outputs["sequences"] = output_ids
937
+ else:
938
+ outputs = output_ids
939
+ return outputs
940
+
941
+ def _prepare_attention_mask_for_generation(
942
+ self,
943
+ inputs_tensor: torch.Tensor,
944
+ generation_config: GenerationConfig,
945
+ model_kwargs: dict[str, Any],
946
+ ) -> torch.LongTensor:
947
+ pad_token_id = generation_config._pad_token_tensor
948
+ eos_token_id = generation_config._eos_token_tensor
949
+
950
+ # `input_ids` may be present in the model kwargs, instead of being the main input (e.g. multimodal model)
951
+ if "input_ids" in model_kwargs and model_kwargs["input_ids"].shape[1] > 0:
952
+ inputs_tensor = model_kwargs["input_ids"]
953
+
954
+ # No information for attention mask inference -> return default attention mask
955
+ if len(inputs_tensor.shape) == 3 and inputs_tensor.shape[1] == 2:
956
+ # For (B, 2, seq_len) inputs, create a (B, seq_len) attention mask
957
+ default_attention_mask = torch.ones(
958
+ (inputs_tensor.shape[0], inputs_tensor.shape[2]), # (B, seq_len)
959
+ dtype=torch.long,
960
+ device=inputs_tensor.device,
961
+ )
962
+ else:
963
+ # Keep the original logic for (B, seq_len) inputs
964
+ default_attention_mask = torch.ones(
965
+ inputs_tensor.shape[:2], # (B, seq_len)
966
+ dtype=torch.long,
967
+ device=inputs_tensor.device,
968
+ )
969
+ if pad_token_id is None:
970
+ return default_attention_mask
971
+
972
+ is_input_ids = len(inputs_tensor.shape) == 2 and inputs_tensor.dtype in [torch.int, torch.long]
973
+ if not is_input_ids:
974
+ return default_attention_mask
975
+
976
+ is_pad_token_in_inputs = (pad_token_id is not None) and (
977
+ isin_mps_friendly(elements=inputs_tensor, test_elements=pad_token_id).any()
978
+ )
979
+ is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
980
+ isin_mps_friendly(elements=eos_token_id, test_elements=pad_token_id).any()
981
+ )
982
+ can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
983
+ attention_mask_from_padding = inputs_tensor.ne(pad_token_id).long()
984
+
985
+ attention_mask = (
986
+ attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
987
+ )
988
+ return attention_mask
989
+
990
+
991
+ @auto_docstring
992
+ class MossSpeechForCausalLM(MossSpeechPreTrainedModel, MossSpeechGenerationMixin):
993
+ _tied_weights_keys = ["text_lm_head.weight", "audio_lm_head.weight"]
994
+ _tp_plan = {"text_lm_head": "colwise_rep", "audio_lm_head": "colwise_rep"}
995
+ _pp_plan = {
996
+ "text_lm_head": (["hidden_states"], ["logits"]),
997
+ "audio_lm_head": (["hidden_states"], ["logits"]),
998
+ }
999
+
1000
+ def __init__(self, config):
1001
+ super().__init__(config)
1002
+ self.model = MossSpeechModel(config)
1003
+ self.vocab_size = config.vocab_size
1004
+ self.text_lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1005
+ self.audio_lm_head = nn.Linear(config.hidden_size, config.audio_vocab_size, bias=False)
1006
+ self.modality_lm_head = {
1007
+ "text": self.text_lm_head,
1008
+ "audio": self.audio_lm_head,
1009
+ }
1010
+
1011
+ # Initialize weights and apply final processing
1012
+ self.post_init()
1013
+
1014
+ @can_return_tuple
1015
+ @auto_docstring
1016
+ def forward(
1017
+ self,
1018
+ input_ids: Optional[torch.LongTensor] = None,
1019
+ attention_mask: Optional[torch.Tensor] = None,
1020
+ position_ids: Optional[torch.LongTensor] = None,
1021
+ past_key_values: Optional[torch.Tensor] = None,
1022
+ past_key_values_dict: Optional[dict] = None,
1023
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1024
+ labels: Optional[torch.LongTensor] = None,
1025
+ use_cache: Optional[bool] = None,
1026
+ cache_position: Optional[torch.LongTensor] = None,
1027
+ logits_to_keep: Union[int, torch.Tensor] = 0,
1028
+ **kwargs: Unpack[TransformersKwargs],
1029
+ ) -> MossSpeechCausalLMOutputWithPast:
1030
+ r"""
1031
+ labels (`torch.LongTensor` of shape `(batch_size, 2, sequence_length)` or `(batch_size, 2*sequence_length)`, *optional*):
1032
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1033
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1034
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1035
+
1036
+ past_key_values_dict (Optional[dict]): KV cache for each block.
1037
+
1038
+ Example:
1039
+
1040
+ ```python
1041
+ >>> from transformers import AutoTokenizer, MossSpeechForCausalLM
1042
+
1043
+ >>> model = MossSpeechForCausalLM.from_pretrained("Qwen/MossSpeech-8B")
1044
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/MossSpeech-8B")
1045
+
1046
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1047
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1048
+
1049
+ >>> # Generate
1050
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1051
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1052
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1053
+ ```
1054
+ """
1055
+ if input_ids is not None and input_ids.dim() == 2:
1056
+ B = input_ids.shape[0]
1057
+ input_ids = input_ids.reshape([B, 2, -1])
1058
+
1059
+ input_ids = input_ids.transpose(1, 2)
1060
+ outputs: MossSpeechModelOutputWithPast = self.model(
1061
+ modalities=["text", "audio"],
1062
+ input_ids=input_ids,
1063
+ attention_mask=attention_mask,
1064
+ position_ids=position_ids,
1065
+ past_key_values=past_key_values,
1066
+ past_key_values_dict=past_key_values_dict,
1067
+ inputs_embeds=inputs_embeds,
1068
+ use_cache=use_cache,
1069
+ cache_position=cache_position,
1070
+ **kwargs,
1071
+ )
1072
+ text_hidden_states = outputs.last_hidden_state_dict["text"]
1073
+ audio_hidden_states = outputs.last_hidden_state_dict["audio"]
1074
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1075
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
1076
+ text_logits = self.modality_lm_head["text"](text_hidden_states[:, slice_indices, :])
1077
+ audio_logits = self.modality_lm_head["audio"](audio_hidden_states[:, slice_indices, :])
1078
+
1079
+ text_loss = None
1080
+ audio_loss = None
1081
+ if labels is not None:
1082
+ if labels.dim() == 2:
1083
+ B = labels.shape[0]
1084
+ labels.reshape([B, 2, -1])
1085
+ text_labels = labels[:, 0, :]
1086
+ audio_labels = labels[:, 1, :]
1087
+ text_loss = self.loss_function(
1088
+ logits=text_logits,
1089
+ labels=text_labels,
1090
+ vocab_size=self.config.vocab_size,
1091
+ **kwargs,
1092
+ )
1093
+ audio_loss = self.loss_function(
1094
+ logits=audio_logits,
1095
+ labels=audio_labels,
1096
+ vocab_size=self.config.vocab_size,
1097
+ **kwargs,
1098
+ )
1099
+ return MossSpeechCausalLMOutputWithPast(
1100
+ text_loss=text_loss,
1101
+ audio_loss=audio_loss,
1102
+ text_logits=text_logits,
1103
+ audio_logits=audio_logits,
1104
+ logits_all=(text_logits, audio_logits),
1105
+ past_key_values=outputs.past_key_values,
1106
+ past_key_values_dict=outputs.past_key_values_dict,
1107
+ text_hidden_states=text_hidden_states,
1108
+ audio_hidden_states=audio_hidden_states,
1109
+ attentions=outputs.attentions,
1110
+ )
1111
+
1112
+
1113
+ class MossSpeechForSequenceClassification(GenericForSequenceClassification, MossSpeechPreTrainedModel):
1114
+ pass
1115
+
1116
+
1117
+ class MossSpeechForTokenClassification(GenericForTokenClassification, MossSpeechPreTrainedModel):
1118
+ pass
1119
+
1120
+
1121
+ class MossSpeechForQuestionAnswering(GenericForQuestionAnswering, MossSpeechPreTrainedModel):
1122
+ base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
1123
+
1124
+
1125
+ __all__ = [
1126
+ "MossSpeechForCausalLM",
1127
+ "MossSpeechForQuestionAnswering",
1128
+ "MossSpeechPreTrainedModel",
1129
+ "MossSpeechModel",
1130
+ "MossSpeechForSequenceClassification",
1131
+ "MossSpeechForTokenClassification",
1132
+ ]
processing_moss_speech.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 OpenMOSS and the HuggingFace Inc. team. All rights
3
+ # reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License"); you may
6
+ # not use this file except in compliance with the License. You may obtain a
7
+ # copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13
+ # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14
+ # License for the specific language governing permissions and limitations
15
+ # under the License.
16
+ """Processor class for MossSpeech."""
17
+
18
+ from __future__ import annotations
19
+
20
+ import os
21
+ import re
22
+ from dataclasses import asdict, dataclass
23
+ from typing import Any, Mapping, Optional, Sequence, Union
24
+
25
+ from transformers import AutoTokenizer
26
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin
27
+ from transformers.tokenization_utils_base import BatchEncoding
28
+ from transformers.utils import OptionalDependencyNotAvailable, is_torch_available, logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ if is_torch_available():
34
+ import torch
35
+ else: # pragma: no cover
36
+ torch = None # type: ignore[assignment]
37
+
38
+ MossSpeechCodec = None
39
+ _MOSS_CODEC_IMPORT_ERROR: Optional[Exception] = None
40
+
41
+ _TEXT_PLACEHOLDER_TOKEN_ID = 151667
42
+ _AUDIO_PAD_TOKEN_ID = 512
43
+ _SOSP_TOKEN_ID = 151646
44
+ _EOSP_TOKEN_ID = 16384
45
+
46
+
47
+ def _ensure_dependencies() -> None:
48
+ global MossSpeechCodec, _MOSS_CODEC_IMPORT_ERROR
49
+
50
+ if torch is None:
51
+ raise OptionalDependencyNotAvailable()
52
+
53
+ if MossSpeechCodec is None:
54
+ try:
55
+ from MossSpeechCodec import MossSpeechCodec as _Codec # type: ignore
56
+ except ImportError as import_error: # pragma: no cover
57
+ _MOSS_CODEC_IMPORT_ERROR = import_error
58
+ raise OptionalDependencyNotAvailable() from import_error
59
+ else:
60
+ MossSpeechCodec = _Codec
61
+ _MOSS_CODEC_IMPORT_ERROR = None
62
+
63
+
64
+ class MossSpeechProcessorKwargs(ProcessingKwargs, total=False):
65
+ """Default keyword argument groups supported by :class:`MossSpeechProcessor`."""
66
+
67
+ _defaults = {
68
+ "common_kwargs": {
69
+ "return_tensors": "pt",
70
+ "padding": True,
71
+ }
72
+ }
73
+
74
+
75
+ @dataclass
76
+ class MossSpeechChatSample:
77
+ """Per-sample MossSpeech input with two-channel token grid."""
78
+
79
+ input_ids_2d: "torch.LongTensor"
80
+ label_ids_2d: Optional["torch.LongTensor"] = None
81
+
82
+
83
+ @dataclass
84
+ class MossSpeechBatchInput:
85
+ """Batched MossSpeech tensors returned by the processor."""
86
+
87
+ input_ids: "torch.LongTensor"
88
+ attention_mask: "torch.LongTensor"
89
+ labels: Optional["torch.LongTensor"] = None
90
+
91
+
92
+ @dataclass
93
+ class MossSpeechResponse:
94
+ """Decoded MossSpeech output item containing text and optional audio."""
95
+
96
+ audio: Optional["torch.Tensor"] = None
97
+ generated_text: str = ""
98
+ sampling_rate: Optional[int] = None
99
+
100
+
101
+ @dataclass
102
+ class _MossSpeechInputSegment:
103
+ """Internal helper representing either text or audio tokens."""
104
+
105
+ text: Optional[str] = None
106
+ audio_tokens: Optional["torch.Tensor"] = None
107
+ tokenized_text: Optional["torch.Tensor"] = None
108
+
109
+ def __post_init__(self) -> None:
110
+ if self.text is None and self.tokenized_text is None:
111
+ raise ValueError("A segment must provide text or tokenized_text content.")
112
+ if self.audio_tokens is not None and self.audio_tokens.dim() != 1:
113
+ raise ValueError("`audio_tokens` must be a 1D tensor of codec token ids.")
114
+
115
+ def to_tensor(self, tokenizer: AutoTokenizer) -> "torch.Tensor":
116
+ _ensure_dependencies()
117
+ if self.tokenized_text is None:
118
+ tokenized = tokenizer(
119
+ self.text,
120
+ return_tensors="pt",
121
+ truncation=True,
122
+ max_length=999999,
123
+ padding=False,
124
+ add_special_tokens=False,
125
+ )["input_ids"].to(dtype=torch.long)
126
+ else:
127
+ tokenized = self.tokenized_text.unsqueeze(0).to(dtype=torch.long)
128
+
129
+ if self.audio_tokens is None:
130
+ audio_channel = torch.full_like(tokenized, _AUDIO_PAD_TOKEN_ID)
131
+ return torch.cat([tokenized, audio_channel], dim=0)
132
+
133
+ audio_tokens = self.audio_tokens.reshape(1, -1).to(dtype=torch.long)
134
+ text_channel = torch.full((1, audio_tokens.shape[1]), _TEXT_PLACEHOLDER_TOKEN_ID, dtype=torch.long)
135
+
136
+ sosp = torch.tensor([[_SOSP_TOKEN_ID]], dtype=torch.long)
137
+ text_pad = torch.tensor([[_TEXT_PLACEHOLDER_TOKEN_ID]], dtype=torch.long)
138
+ eosp = torch.tensor([[_EOSP_TOKEN_ID]], dtype=torch.long)
139
+ audio_pad = torch.tensor([[_AUDIO_PAD_TOKEN_ID]], dtype=torch.long)
140
+
141
+ text_channel = torch.cat([sosp, text_channel, text_pad], dim=1)
142
+ audio_channel = torch.cat([audio_pad, audio_tokens, eosp], dim=1)
143
+ return torch.cat([text_channel, audio_channel], dim=0)
144
+
145
+
146
+ class MossSpeechSampleProcessor:
147
+ """Formats a structured conversation into MossSpeech grid tokens."""
148
+
149
+ def __init__(
150
+ self,
151
+ tokenizer: AutoTokenizer,
152
+ audio_codec: MossSpeechCodec,
153
+ default_system_prompts: Mapping[str, str],
154
+ ) -> None:
155
+ self.tokenizer = tokenizer
156
+ self.audio_codec = audio_codec
157
+ self.default_system_prompts = default_system_prompts
158
+
159
+ def prepare_sample(
160
+ self,
161
+ conversation: Sequence[Mapping[str, Any]],
162
+ output_modality: str,
163
+ ) -> MossSpeechChatSample:
164
+ _ensure_dependencies()
165
+ if len(conversation) == 0:
166
+ raise ValueError("`conversation` must contain at least one turn.")
167
+
168
+ segments: list[_MossSpeechInputSegment] = []
169
+ for turn in conversation:
170
+ role = turn.get("role")
171
+ if role not in {"user", "assistant", "system"}:
172
+ raise ValueError(f"Unsupported role `{role}` detected.")
173
+
174
+ segments.append(_MossSpeechInputSegment(text=f"<|im_start|>{role}\n"))
175
+ content = turn.get("content")
176
+ if isinstance(content, Mapping):
177
+ audio_path = content.get("path")
178
+ if audio_path is None:
179
+ raise ValueError("Audio turn content must include a `path` entry.")
180
+ encoded = self.audio_codec.encode([audio_path])[0]
181
+ segments.append(_MossSpeechInputSegment(audio_tokens=torch.tensor(encoded, dtype=torch.long)))
182
+ else:
183
+ segments.append(_MossSpeechInputSegment(text=str(content)))
184
+ segments.append(_MossSpeechInputSegment(text="<|im_end|>\n"))
185
+
186
+ if conversation[0].get("role") != "system":
187
+ system_prompt = self.default_system_prompts.get(output_modality)
188
+ if system_prompt is None:
189
+ raise KeyError(f"Missing default system prompt for modality `{output_modality}`.")
190
+ segments.extend(
191
+ [
192
+ _MossSpeechInputSegment(text="<|im_start|>system\n"),
193
+ _MossSpeechInputSegment(text=system_prompt),
194
+ _MossSpeechInputSegment(text="<|im_end|>\n"),
195
+ ]
196
+ )
197
+
198
+ if output_modality == "text":
199
+ segments.append(_MossSpeechInputSegment(text="<|im_start|>assistant\n"))
200
+ elif output_modality == "audio":
201
+ segments.append(_MossSpeechInputSegment(text="<|im_start|>assistant\n<|object_ref_start|>"))
202
+ else:
203
+ raise NotImplementedError("Supported modalities are `text` and `audio`.")
204
+
205
+ input_tensors = [segment.to_tensor(self.tokenizer) for segment in segments]
206
+ input_ids = torch.cat(input_tensors, dim=1)
207
+ return MossSpeechChatSample(input_ids_2d=input_ids)
208
+
209
+ def collate(
210
+ self,
211
+ samples: Sequence[MossSpeechChatSample],
212
+ *,
213
+ pad_token_id: int,
214
+ audio_pad_token_id: int,
215
+ ) -> MossSpeechBatchInput:
216
+ _ensure_dependencies()
217
+ if len(samples) == 0:
218
+ raise ValueError("`samples` must not be empty.")
219
+
220
+ channel_count = samples[0].input_ids_2d.shape[0]
221
+ max_length = max(sample.input_ids_2d.shape[1] for sample in samples)
222
+
223
+ padded_inputs: list["torch.Tensor"] = []
224
+ attention_masks: list["torch.Tensor"] = []
225
+
226
+ for sample in samples:
227
+ seq_len = sample.input_ids_2d.shape[1]
228
+ pad_len = max_length - seq_len
229
+
230
+ pad_grid = torch.full((channel_count, pad_len), audio_pad_token_id, dtype=torch.long)
231
+ pad_grid[0] = pad_grid[0].fill_(pad_token_id)
232
+ padded_inputs.append(torch.cat([pad_grid, sample.input_ids_2d], dim=1))
233
+
234
+ attention_prefix = torch.zeros(pad_len, dtype=torch.long)
235
+ attention_body = torch.ones(seq_len, dtype=torch.long)
236
+ attention_masks.append(torch.cat([attention_prefix, attention_body], dim=0))
237
+
238
+ input_ids = torch.stack(padded_inputs).permute(0, 2, 1)
239
+ attention_mask = torch.stack(attention_masks)
240
+
241
+ return MossSpeechBatchInput(
242
+ input_ids=input_ids,
243
+ attention_mask=attention_mask,
244
+ labels=None,
245
+ )
246
+
247
+
248
+ class MossSpeechProcessor(ProcessorMixin):
249
+ r"""Combines MossSpeech tokenizer and codec for unified text/audio processing."""
250
+
251
+ tokenizer_class = "AutoTokenizer"
252
+ audio_codec_class = "PreTrainedModel"
253
+ attributes = ["tokenizer", "audio_codec"]
254
+
255
+ def __init__(
256
+ self,
257
+ tokenizer,
258
+ audio_codec,
259
+ **kwargs,
260
+ ) -> None:
261
+ _ensure_dependencies()
262
+ super().__init__(tokenizer=tokenizer, audio_codec=audio_codec, **kwargs)
263
+ self.default_system_prompts = {
264
+ "text": "You are a helpful assistant. Respond with text outputs.",
265
+ "audio": "You are a helpful assistant. Respond with spoken outputs.",
266
+ }
267
+ self.sample_processor = MossSpeechSampleProcessor(
268
+ tokenizer=self.tokenizer,
269
+ audio_codec=self.audio_codec,
270
+ default_system_prompts=self.default_system_prompts,
271
+ )
272
+ self.sosp_token_id = _SOSP_TOKEN_ID
273
+ self.eosp_token_id = _EOSP_TOKEN_ID
274
+
275
+ @classmethod
276
+ def from_pretrained(
277
+ cls,
278
+ pretrained_model_name_or_path: Union[str, os.PathLike[str]],
279
+ trust_remote_code: bool = True,
280
+ **kwargs: Any,
281
+ ) -> "MossSpeechProcessor":
282
+ kwargs.pop("_from_auto", None)
283
+ codec_path = kwargs.pop("codec_path", None)
284
+ if codec_path is None:
285
+ raise ValueError("`codec_path` must be supplied to load the MossSpeech codec.")
286
+
287
+ device = kwargs.pop("device", None) or "cpu"
288
+ tokenizer = AutoTokenizer.from_pretrained(
289
+ pretrained_model_name_or_path,
290
+ trust_remote_code=trust_remote_code,
291
+ **kwargs,
292
+ )
293
+ _ensure_dependencies()
294
+ audio_codec = MossSpeechCodec.from_pretrained(codec_path, trust_remote_code=True).to(device)
295
+ return cls(tokenizer=tokenizer, audio_codec=audio_codec)
296
+
297
+ def __call__(
298
+ self,
299
+ data: Union[Mapping[str, Any], Sequence[Sequence[Mapping[str, Any]]]],
300
+ output_modalities: Union[str, Sequence[str]],
301
+ **kwargs: Any,
302
+ ) -> BatchEncoding:
303
+ _ensure_dependencies()
304
+ if isinstance(data, Mapping):
305
+ samples: list[Sequence[Mapping[str, Any]]] = [data] # type: ignore[list-item]
306
+ elif isinstance(data, Sequence):
307
+ if len(data) == 0:
308
+ raise ValueError("`data` must contain at least one sample.")
309
+ if all(isinstance(turn, Mapping) for turn in data):
310
+ samples = [data] # type: ignore[list-item]
311
+ else:
312
+ samples = list(data) # type: ignore[list-item]
313
+ else:
314
+ raise TypeError("`data` must be a conversation dictionary or a sequence of conversations.")
315
+
316
+ if isinstance(output_modalities, str):
317
+ output_modalities = [output_modalities] * len(samples)
318
+ elif len(output_modalities) != len(samples):
319
+ raise ValueError("`output_modalities` length must match number of samples.")
320
+
321
+ merged_kwargs = self._merge_kwargs(MossSpeechProcessorKwargs, **kwargs)
322
+ common_kwargs = merged_kwargs["common_kwargs"]
323
+ padding = common_kwargs.get("padding", True)
324
+ if not padding:
325
+ raise NotImplementedError("Only padded batches are currently supported.")
326
+ return_tensors = common_kwargs.get("return_tensors", "pt")
327
+
328
+ chat_samples = [
329
+ self.sample_processor.prepare_sample(conversation, modality)
330
+ for conversation, modality in zip(samples, output_modalities)
331
+ ]
332
+
333
+ pad_token_id = self.tokenizer.pad_token_id
334
+ if pad_token_id is None:
335
+ raise ValueError("Tokenizer must define `pad_token_id` for MossSpeech processing.")
336
+
337
+ batch_inputs = self.sample_processor.collate(
338
+ chat_samples,
339
+ pad_token_id=pad_token_id,
340
+ audio_pad_token_id=_AUDIO_PAD_TOKEN_ID,
341
+ )
342
+ payload = {key: value for key, value in asdict(batch_inputs).items() if value is not None}
343
+ return BatchEncoding(payload, tensor_type=return_tensors)
344
+
345
+ def decode(
346
+ self,
347
+ token_ids: "torch.Tensor",
348
+ output_modalities: Union[str, Sequence[str]],
349
+ *args: Any,
350
+ **kwargs: Any,
351
+ ) -> list[MossSpeechResponse]:
352
+ _ensure_dependencies()
353
+ if token_ids.dim() != 3:
354
+ raise ValueError("`token_ids` must be shaped as (batch, sequence_length, channels).")
355
+
356
+ if isinstance(output_modalities, str):
357
+ output_modalities = [output_modalities] * token_ids.shape[0]
358
+ elif len(output_modalities) != token_ids.shape[0]:
359
+ raise ValueError("`output_modalities` length must equal the batch size.")
360
+
361
+ if token_ids.shape[0] != 1:
362
+ raise NotImplementedError("Batch decoding is not yet implemented for MossSpeech.")
363
+
364
+ responses: list[MossSpeechResponse] = []
365
+ for batch_index, modality in enumerate(output_modalities):
366
+ tokens = token_ids[batch_index].int().cpu()
367
+ if tokens.shape[1] != 2:
368
+ tokens = tokens.transpose(0, 1)
369
+ if tokens.shape[0] != 2:
370
+ raise ValueError("Decoded tensor must contain exactly two channels (text and audio).")
371
+
372
+ if modality == "audio":
373
+ prefix = torch.tensor([[_SOSP_TOKEN_ID], [_AUDIO_PAD_TOKEN_ID]], dtype=torch.long)
374
+ tokens = torch.cat([prefix, tokens], dim=1)
375
+
376
+ text_channel = tokens[0, :-1]
377
+ audio_channel = tokens[1, :-1]
378
+ decoded_text = (
379
+ self.tokenizer.decode(text_channel, skip_special_tokens=True)
380
+ .replace("<|empty|>", ".")
381
+ .replace("<|end_empty|>", ":")
382
+ )
383
+
384
+ sosp_indices = (text_channel == self.sosp_token_id).nonzero(as_tuple=True)[0]
385
+ eosp_indices = (audio_channel == self.eosp_token_id).nonzero(as_tuple=True)[0]
386
+
387
+ waveform: Optional["torch.Tensor"] = None
388
+ if len(sosp_indices) > 0:
389
+ start_idx = sosp_indices[0].item() + 1
390
+ stop_idx = eosp_indices[0].item() if len(eosp_indices) > 0 else text_channel.shape[0]
391
+ audio_tokens = tokens[:, start_idx:stop_idx]
392
+ flattened_audio_tokens = audio_tokens[1].reshape(-1).tolist()
393
+
394
+ continuation = "".join(f"<{token}>" for token in flattened_audio_tokens)
395
+ codec_tokens = [int(match) for match in re.findall(r"(\d+)>", continuation)]
396
+ codec_tensor = torch.tensor(codec_tokens, dtype=torch.long).reshape(1, 1, -1)
397
+
398
+ prompt_path = kwargs.get("decoder_audio_prompt_path")
399
+ if prompt_path is None:
400
+ raise ValueError("`decoder_audio_prompt_path` must be provided to decode audio outputs.")
401
+ codec_output = self.audio_codec.decode(codec_tensor, prompt_speech=prompt_path)
402
+ waveform = codec_output["syn_wav_list"][0].reshape(1, -1).detach().cpu()
403
+
404
+ responses.append(
405
+ MossSpeechResponse(
406
+ audio=waveform,
407
+ generated_text=decoded_text,
408
+ sampling_rate=24000 if waveform is not None else None,
409
+ )
410
+ )
411
+
412
+ return responses
413
+
414
+
415
+ __all__ = [
416
+ "MossSpeechProcessor",
417
+ "MossSpeechProcessorKwargs",
418
+ "MossSpeechResponse",
419
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff