Upload KazEmbed-V5: Best BASE-size Kazakh embedding model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +155 -0
- config.json +27 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- kk
|
| 4 |
+
- ru
|
| 5 |
+
- en
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
tags:
|
| 8 |
+
- sentence-transformers
|
| 9 |
+
- feature-extraction
|
| 10 |
+
- sentence-similarity
|
| 11 |
+
- embedding
|
| 12 |
+
- retrieval
|
| 13 |
+
- kazakh
|
| 14 |
+
- rag
|
| 15 |
+
datasets:
|
| 16 |
+
- issai/kazqad
|
| 17 |
+
- issai/kazqad-retrieval
|
| 18 |
+
- DarkyMan/powerful-kazakh-dialogue
|
| 19 |
+
library_name: sentence-transformers
|
| 20 |
+
pipeline_tag: sentence-similarity
|
| 21 |
+
base_model: intfloat/multilingual-e5-base
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# KazEmbed-V5: Kazakh Embedding Model for RAG
|
| 25 |
+
|
| 26 |
+
🏆 **Best BASE-size embedding model for Kazakh language retrieval tasks**
|
| 27 |
+
|
| 28 |
+
## Model Description
|
| 29 |
+
|
| 30 |
+
KazEmbed-V5 is a fine-tuned version of [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) optimized for Kazakh language retrieval and RAG (Retrieval-Augmented Generation) applications.
|
| 31 |
+
|
| 32 |
+
### Key Features
|
| 33 |
+
|
| 34 |
+
- 🇰🇿 **Specialized for Kazakh**: Fine-tuned on 61,255 Kazakh text pairs
|
| 35 |
+
- 📈 **+2.1% MRR improvement** over multilingual-e5-base
|
| 36 |
+
- ⚡ **Efficient**: 278M parameters (base-size model)
|
| 37 |
+
- 🔍 **RAG-optimized**: Trained specifically for retrieval tasks
|
| 38 |
+
|
| 39 |
+
## Benchmark Results
|
| 40 |
+
|
| 41 |
+
| Model | Hits@1 | Hits@5 | MRR | Params |
|
| 42 |
+
|-------|--------|--------|-----|--------|
|
| 43 |
+
| **KazEmbed-V5 (Ours)** | **72%** | **96%** | **0.835** | 278M |
|
| 44 |
+
| multilingual-e5-base | 72% | 96% | 0.818 | 278M |
|
| 45 |
+
| multilingual-e5-large | 85% | 99% | 0.909 | 560M |
|
| 46 |
+
| paraphrase-mpnet-v2 | 53% | 80% | 0.648 | 278M |
|
| 47 |
+
| LaBSE | 48% | 73% | 0.601 | 471M |
|
| 48 |
+
|
| 49 |
+
*Evaluated on KazQAD test set with TF-IDF hard negatives (100 candidates per query)*
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
|
| 53 |
+
### Installation
|
| 54 |
+
|
| 55 |
+
```bash
|
| 56 |
+
pip install sentence-transformers
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
### Basic Usage
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from sentence_transformers import SentenceTransformer
|
| 63 |
+
|
| 64 |
+
model = SentenceTransformer('YOUR_USERNAME/kazembed-v5')
|
| 65 |
+
|
| 66 |
+
# For queries (questions)
|
| 67 |
+
query = "query: Қазақстанның астанасы қай қала?"
|
| 68 |
+
query_embedding = model.encode(query)
|
| 69 |
+
|
| 70 |
+
# For passages (documents)
|
| 71 |
+
passage = "passage: Астана — Қазақстан Республикасының астанасы."
|
| 72 |
+
passage_embedding = model.encode(passage)
|
| 73 |
+
|
| 74 |
+
# Calculate similarity
|
| 75 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 76 |
+
similarity = cosine_similarity([query_embedding], [passage_embedding])[0][0]
|
| 77 |
+
print(f"Similarity: {similarity:.4f}")
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### For RAG Applications
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from sentence_transformers import SentenceTransformer
|
| 84 |
+
import numpy as np
|
| 85 |
+
|
| 86 |
+
model = SentenceTransformer('YOUR_USERNAME/kazembed-v5')
|
| 87 |
+
|
| 88 |
+
# Your document corpus
|
| 89 |
+
documents = [
|
| 90 |
+
"Астана — Қазақстан Республикасының астанасы.",
|
| 91 |
+
"Алматы — Қазақстанның ең үлкен қаласы.",
|
| 92 |
+
"Қазақстан — Орталық Азиядағы мемлекет.",
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
# Encode documents (do once, store in vector DB)
|
| 96 |
+
doc_embeddings = model.encode(["passage: " + doc for doc in documents])
|
| 97 |
+
|
| 98 |
+
# Query
|
| 99 |
+
query = "Қазақстанның астанасы қай қала?"
|
| 100 |
+
query_embedding = model.encode("query: " + query)
|
| 101 |
+
|
| 102 |
+
# Find most similar
|
| 103 |
+
similarities = np.dot(doc_embeddings, query_embedding)
|
| 104 |
+
best_idx = np.argmax(similarities)
|
| 105 |
+
print(f"Best match: {documents[best_idx]}")
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
## Training Details
|
| 109 |
+
|
| 110 |
+
### Training Data
|
| 111 |
+
|
| 112 |
+
| Dataset | Pairs | Description |
|
| 113 |
+
|---------|-------|-------------|
|
| 114 |
+
| KazQAD | 6,640 | Question-Context pairs |
|
| 115 |
+
| KazQAD-Retrieval | 44,615 | Title-Text pairs |
|
| 116 |
+
| Powerful-Kazakh-Dialogue | 10,000 | User-Assistant pairs |
|
| 117 |
+
| **Total** | **61,255** | Retrieval-focused pairs |
|
| 118 |
+
|
| 119 |
+
### Training Configuration
|
| 120 |
+
|
| 121 |
+
- **Base Model**: intfloat/multilingual-e5-base
|
| 122 |
+
- **Epochs**: 2
|
| 123 |
+
- **Batch Size**: 16
|
| 124 |
+
- **Learning Rate**: 1e-5
|
| 125 |
+
- **Loss**: MultipleNegativesRankingLoss
|
| 126 |
+
- **Hardware**: NVIDIA GPU
|
| 127 |
+
|
| 128 |
+
### Training Strategy
|
| 129 |
+
|
| 130 |
+
We found that:
|
| 131 |
+
1. **Retrieval-only data** works best (no NLI/STS data)
|
| 132 |
+
2. **2 epochs** is optimal (1 = underfit, 3 = overfit)
|
| 133 |
+
3. **Larger batch size** (16) provides more in-batch negatives
|
| 134 |
+
|
| 135 |
+
## Limitations
|
| 136 |
+
|
| 137 |
+
- Optimized for Kazakh; performance on other languages may vary
|
| 138 |
+
- Best for retrieval tasks; may not be optimal for semantic similarity
|
| 139 |
+
- Requires `query:` and `passage:` prefixes for best results
|
| 140 |
+
|
| 141 |
+
## Citation
|
| 142 |
+
|
| 143 |
+
```bibtex
|
| 144 |
+
@misc{kazembed2024,
|
| 145 |
+
title={KazEmbed-V5: A Fine-tuned Embedding Model for Kazakh Language Retrieval},
|
| 146 |
+
author={Your Name},
|
| 147 |
+
year={2024},
|
| 148 |
+
howpublished={HuggingFace Hub}
|
| 149 |
+
}
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
## Acknowledgments
|
| 153 |
+
|
| 154 |
+
- Base model: [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)
|
| 155 |
+
- Training data: [ISSAI](https://issai.nu.edu.kz/) for KazQAD dataset
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"transformers_version": "4.57.3",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.2",
|
| 5 |
+
"transformers": "4.57.3",
|
| 6 |
+
"pytorch": "2.9.1+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0579b07073d7da806177eaa5abe6a3be9fdb94d1c1a620313bc78ddeab247e34
|
| 3 |
+
size 1112197096
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"max_length": 512,
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "</s>",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|