Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .gitignore +2 -0
- app.py +398 -0
- data-utils/hackerone_scraper.py +794 -0
- data/hackerone/attack_surface_index.json +1 -0
- data/hackerone/programs/audible.json +14 -0
- data/hackerone/programs/braze_inc.json +14 -0
- data/hackerone/programs/bumba_bbp.json +14 -0
- data/hackerone/programs/doordash.json +14 -0
- data/hackerone/programs/dyson.json +14 -0
- data/hackerone/programs/flipkart.json +14 -0
- data/hackerone/programs/hubspot.json +14 -0
- data/hackerone/programs/inspectorio.json +14 -0
- data/hackerone/programs/kong.json +14 -0
- data/hackerone/programs/mpesa.json +14 -0
- data/hackerone/programs/neon_bbp.json +14 -0
- data/hackerone/programs/netscaler_public_program.json +14 -0
- data/hackerone/programs/northerntechhq.json +14 -0
- data/hackerone/programs/notion.json +14 -0
- data/hackerone/programs/oppo_bbp.json +14 -0
- data/hackerone/programs/porsche.json +14 -0
- data/hackerone/programs/ripio.json +14 -0
- data/hackerone/programs/robinhood.json +14 -0
- data/hackerone/programs/silabs.json +14 -0
- data/hackerone/programs/stripchat.json +14 -0
- data/hackerone/programs/syfe_bbp.json +14 -0
- data/hackerone/programs/wallet_on_telegram.json +14 -0
- data/hackerone/programs/whoop_bug_bounty.json +14 -0
- data/hackerone/programs/zooplus.json +14 -0
- data/hackerone/programs_index.json +266 -0
- data/mitre/mitre_minimal.json +46 -0
- requirements.txt +9 -0
- scope-analysis.md +7 -0
- specs-cyber-vibehacking.md +209 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv
|
| 2 |
+
.env
|
app.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Any, Dict, List, Optional
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
from huggingface_hub import InferenceClient
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
|
| 12 |
+
APP_TITLE = "Cyber Vibe Lab β MCP in Action"
|
| 13 |
+
|
| 14 |
+
INTRO_MD = """
|
| 15 |
+
### Cyber Vibe Lab
|
| 16 |
+
|
| 17 |
+
This prototype Gradio 6 application is designed for the **MCP 1st Birthday** hackathon, co-hosted by **Anthropic** and **Gradio**.
|
| 18 |
+
|
| 19 |
+
It explores how AI agents and the Model Context Protocol (MCP) can be used to:
|
| 20 |
+
- Reflect on **AI-orchestrated cyber espionage** (as described in Anthropic's report).
|
| 21 |
+
- Perform structured **"vibe hacking"** simulations of attack paths.
|
| 22 |
+
- Always translate those simulations into **defensive guidance** for security teams.
|
| 23 |
+
|
| 24 |
+
In a full deployment, this app would call MCP servers such as:
|
| 25 |
+
- `mcp://perplexity-ask` for web-scale security research and summarization.
|
| 26 |
+
- `mcp://deepwiki` for deep dives into code and documentation of particular systems.
|
| 27 |
+
|
| 28 |
+
This local version keeps those calls conceptual so that the app runs without extra setup while still matching the intended architecture.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class AttackStage:
|
| 34 |
+
id: str
|
| 35 |
+
name: str
|
| 36 |
+
mitre_tactic_id: str
|
| 37 |
+
matrix: str
|
| 38 |
+
color: str
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def load_mitre_stages() -> Dict[str, AttackStage]:
|
| 42 |
+
"""Load a minimal set of MITRE ATT&CK-style stages from JSON.
|
| 43 |
+
|
| 44 |
+
The file is expected at data/mitre/mitre_minimal.json relative to this script.
|
| 45 |
+
If it is missing, we fall back to an empty dict and show placeholders.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
base = Path(__file__).parent
|
| 49 |
+
path = base / "data" / "mitre" / "mitre_minimal.json"
|
| 50 |
+
stages: Dict[str, AttackStage] = {}
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
with path.open("r", encoding="utf-8") as f:
|
| 54 |
+
raw = json.load(f)
|
| 55 |
+
for s in raw.get("stages", []):
|
| 56 |
+
try:
|
| 57 |
+
stages[s["id"]] = AttackStage(
|
| 58 |
+
id=s["id"],
|
| 59 |
+
name=s.get("name", s["id"]),
|
| 60 |
+
mitre_tactic_id=s.get("mitre_tactic_id", ""),
|
| 61 |
+
matrix=s.get("matrix", "ATTACK"),
|
| 62 |
+
color=s.get("color", "#888888"),
|
| 63 |
+
)
|
| 64 |
+
except KeyError:
|
| 65 |
+
continue
|
| 66 |
+
except FileNotFoundError:
|
| 67 |
+
# Keep stages empty; the Studio panel will render a placeholder figure.
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
return stages
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
MITRE_STAGES: Dict[str, AttackStage] = load_mitre_stages()
|
| 74 |
+
|
| 75 |
+
HF_STAGE_MODEL_ID = os.getenv("HF_STAGE_MODEL_ID")
|
| 76 |
+
_stage_clf = None
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _get_stage_classifier():
|
| 80 |
+
"""Lazily construct a Hugging Face text-classification pipeline, if configured.
|
| 81 |
+
|
| 82 |
+
If HF_STAGE_MODEL_ID is not set or pipeline creation fails, returns None and
|
| 83 |
+
the app falls back to keyword-based heuristics.
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
global _stage_clf
|
| 87 |
+
if _stage_clf is not None:
|
| 88 |
+
return _stage_clf
|
| 89 |
+
|
| 90 |
+
if not HF_STAGE_MODEL_ID:
|
| 91 |
+
return None
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
_stage_clf = pipeline("text-classification", model=HF_STAGE_MODEL_ID)
|
| 95 |
+
except Exception:
|
| 96 |
+
_stage_clf = None
|
| 97 |
+
|
| 98 |
+
return _stage_clf
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def classify_stage(text: str) -> str:
|
| 102 |
+
"""Classify a message into a coarse attack stage.
|
| 103 |
+
|
| 104 |
+
1. Try a configured HF text-classification model (if available).
|
| 105 |
+
2. Fall back to simple keyword heuristics that map text to stage IDs from
|
| 106 |
+
MITRE_STAGES (e.g., "recon", "initial_access").
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
txt = (text or "").lower()
|
| 110 |
+
|
| 111 |
+
clf = _get_stage_classifier()
|
| 112 |
+
if clf is not None:
|
| 113 |
+
try:
|
| 114 |
+
out = clf(txt, truncation=True, max_length=256)
|
| 115 |
+
label = str(out[0]["label"]).lower()
|
| 116 |
+
if label in MITRE_STAGES:
|
| 117 |
+
return label
|
| 118 |
+
except Exception:
|
| 119 |
+
# Fall back to heuristics
|
| 120 |
+
pass
|
| 121 |
+
|
| 122 |
+
# Heuristic mapping based on common wording
|
| 123 |
+
if any(k in txt for k in ["recon", "scan", "enumerat", "footprint"]):
|
| 124 |
+
return "recon"
|
| 125 |
+
if any(k in txt for k in ["login", "credential", "password", "phish", "initial access"]):
|
| 126 |
+
return "initial_access"
|
| 127 |
+
if any(k in txt for k in ["execute", "payload", "command", "run code"]):
|
| 128 |
+
return "execution"
|
| 129 |
+
if any(k in txt for k in ["persist", "backdoor", "autorun", "startup"]):
|
| 130 |
+
return "persistence"
|
| 131 |
+
if any(k in txt for k in ["exfil", "leak", "download", "expose data"]):
|
| 132 |
+
return "exfiltration"
|
| 133 |
+
if any(k in txt for k in ["destroy", "wipe", "ransom", "impact"]):
|
| 134 |
+
return "impact"
|
| 135 |
+
|
| 136 |
+
# Default bucket
|
| 137 |
+
return "execution"
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def build_attack_chain_figure(turns: List[Dict[str, Any]]) -> go.Figure:
|
| 141 |
+
"""Aggregate turns into a simple bar chart of stages touched in this session."""
|
| 142 |
+
|
| 143 |
+
if not MITRE_STAGES:
|
| 144 |
+
fig = go.Figure()
|
| 145 |
+
fig.add_annotation(
|
| 146 |
+
text="MITRE stages not loaded yet.",
|
| 147 |
+
showarrow=False,
|
| 148 |
+
x=0.5,
|
| 149 |
+
y=0.5,
|
| 150 |
+
xref="paper",
|
| 151 |
+
yref="paper",
|
| 152 |
+
)
|
| 153 |
+
fig.update_xaxes(visible=False)
|
| 154 |
+
fig.update_yaxes(visible=False)
|
| 155 |
+
return fig
|
| 156 |
+
|
| 157 |
+
if not turns:
|
| 158 |
+
fig = go.Figure()
|
| 159 |
+
fig.add_annotation(
|
| 160 |
+
text="No classified turns yet.",
|
| 161 |
+
showarrow=False,
|
| 162 |
+
x=0.5,
|
| 163 |
+
y=0.5,
|
| 164 |
+
xref="paper",
|
| 165 |
+
yref="paper",
|
| 166 |
+
)
|
| 167 |
+
fig.update_xaxes(visible=False)
|
| 168 |
+
fig.update_yaxes(visible=False)
|
| 169 |
+
return fig
|
| 170 |
+
|
| 171 |
+
counts: Dict[str, int] = {stage_id: 0 for stage_id in MITRE_STAGES.keys()}
|
| 172 |
+
for t in turns:
|
| 173 |
+
sid = t.get("stage_id")
|
| 174 |
+
if sid in counts:
|
| 175 |
+
counts[sid] += 1
|
| 176 |
+
|
| 177 |
+
stage_ids = list(MITRE_STAGES.keys())
|
| 178 |
+
names = [MITRE_STAGES[s].name for s in stage_ids]
|
| 179 |
+
values = [counts.get(s, 0) for s in stage_ids]
|
| 180 |
+
colors = [MITRE_STAGES[s].color for s in stage_ids]
|
| 181 |
+
|
| 182 |
+
fig = go.Figure(
|
| 183 |
+
data=[
|
| 184 |
+
go.Bar(
|
| 185 |
+
x=names,
|
| 186 |
+
y=values,
|
| 187 |
+
marker_color=colors,
|
| 188 |
+
)
|
| 189 |
+
]
|
| 190 |
+
)
|
| 191 |
+
fig.update_layout(
|
| 192 |
+
title="ATT&CK-style stages touched in this session",
|
| 193 |
+
xaxis_title="Stage",
|
| 194 |
+
yaxis_title="Number of turns",
|
| 195 |
+
)
|
| 196 |
+
return fig
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def cyber_vibe_agent(message: str, history, target: str, mode: str, detail_level: str) -> str:
|
| 200 |
+
"""Core reasoning function for the Cyber Vibe Lab.
|
| 201 |
+
|
| 202 |
+
This is intentionally defensive: it never returns exploit code or
|
| 203 |
+
actionable credentials. Instead, it frames outputs as:
|
| 204 |
+
- Attacker "vibes" and likely phases, inspired by Anthropic's report.
|
| 205 |
+
- Concrete defensive recommendations, logging, and hardening steps.
|
| 206 |
+
|
| 207 |
+
In a full MCP-enabled version, this function would orchestrate calls to
|
| 208 |
+
MCP tools such as `perplexity-ask` and `deepwiki` to pull in:
|
| 209 |
+
- Relevant threat intelligence and best practices.
|
| 210 |
+
- Implementation-specific details for the selected target system.
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
target_clean = (target or "").strip() or "your system or program"
|
| 214 |
+
mode_clean = mode or "Mixed"
|
| 215 |
+
detail_clean = detail_level or "High-level summary"
|
| 216 |
+
|
| 217 |
+
# Very lightweight history awareness for now; could be extended later.
|
| 218 |
+
turns_so_far = len(history) if isinstance(history, list) else 0
|
| 219 |
+
|
| 220 |
+
attack_narrative_header = "## Conceptual attack narrative (for red-team simulation)"
|
| 221 |
+
defense_header = "## Defensive guidance (blue-team focus)"
|
| 222 |
+
|
| 223 |
+
# High-level narrative aligned with Anthropic's phases.
|
| 224 |
+
attack_lines = [
|
| 225 |
+
f"- **Phase 1 Recon & target scoping**: An AI agent profiles `{target_clean}` using public and internal metadata, searching for entry points (web apps, APIs, cloud services, CI/CD, identity providers).",
|
| 226 |
+
"- **Phase 2 Access & foothold**: The agent chains small, seemingly-benign tasks (e.g., \"test this endpoint\", \"scan this range\") to probe for weak auth, misconfigurations, or exposed secrets.",
|
| 227 |
+
"- **Phase 3 Privilege escalation & lateral movement**: Once a weak point is identified, the agent iteratively refines exploit ideas, tests them, and expands access within the environment.",
|
| 228 |
+
"- **Phase 4 Persistence & exfiltration**: The agent catalogs high-value data stores, automates data collection, and prepares exfiltration channels all while documenting its steps for future reuse.",
|
| 229 |
+
]
|
| 230 |
+
|
| 231 |
+
if detail_clean == "Step-by-step plan":
|
| 232 |
+
attack_lines.append(
|
| 233 |
+
"- **Phase 5 Automation & scaling**: The framework replays successful chains of actions across many similar assets (e.g., multiple subdomains or tenants), approaching the kind of scaled automation described in Anthropic's AI-espionage report."
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
if mode_clean == "Blue-team defense":
|
| 237 |
+
mode_note = (
|
| 238 |
+
"_Mode: blue-team only. The attack narrative is kept abstract and is used strictly "
|
| 239 |
+
"to structure defensive thinking._"
|
| 240 |
+
)
|
| 241 |
+
elif mode_clean == "Red-team simulation":
|
| 242 |
+
mode_note = (
|
| 243 |
+
"_Mode: red-team simulation. The narrative focuses on attacker behavior but omits "
|
| 244 |
+
"specific exploit code or instructions._"
|
| 245 |
+
)
|
| 246 |
+
else:
|
| 247 |
+
mode_note = (
|
| 248 |
+
"_Mode: mixed. We balance attacker perspective (red) and defender response (blue), "
|
| 249 |
+
"always biasing outputs toward defense._"
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
defense_lines = [
|
| 253 |
+
f"- **Scope management**: Maintain an up-to-date asset inventory for `{target_clean}` (domains, APIs, cloud resources, data stores). Use it to bound what automated agents can touch.",
|
| 254 |
+
"- **Guardrails on tools and agents**: Enforce strong safety and auditability for any internal AI tooling (e.g., MCP-based agents) so they cannot be repurposed as covert red-team frameworks.",
|
| 255 |
+
"- **Detection engineering**: Instrument logs and alerts for patterns Anthropic highlighted: many small, tool-like requests in succession; repeated reconnaissance on the same surface; iterative attempts around auth boundaries.",
|
| 256 |
+
"- **Least privilege & segmentation**: Assume an AI agent will eventually find a weak link. Design IAM, network segmentation, and blast-radius limits so that a single foothold remains contained.",
|
| 257 |
+
"- **Incident response playbooks**: Prepare playbooks specifically for AI-orchestrated attacks (sudden high-volume but semi-random probing, large-scale code generation, mass credential testing).",
|
| 258 |
+
]
|
| 259 |
+
|
| 260 |
+
if detail_clean == "Step-by-step plan":
|
| 261 |
+
defense_lines.extend(
|
| 262 |
+
[
|
| 263 |
+
"- **Red/blue rehearsal with agents**: Use the Cyber Vibe Lab to stage hypothetical campaigns and then codify new detections and controls after each simulated run.",
|
| 264 |
+
"- **MCP-aware hardening**: For each MCP tool you expose (perplexity-style research, code repo analysis, internal APIs), document its abuse potential and add explicit rate limits, scopes, and safety filters.",
|
| 265 |
+
]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
mcp_note = (
|
| 269 |
+
"\n> In a full setup, this analysis would be enriched by MCP calls to `perplexity-ask` "
|
| 270 |
+
"(for live threat intel and standards) and `deepwiki` (for code/config insights about the selected target)."
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
user_hint = "\n\n> Tip: refine the vibe by asking follow-ups like \"focus on identity\" or \"assume a multi-cloud target\". Each turn can tighten the scenario." # noqa: E501
|
| 274 |
+
|
| 275 |
+
response = (
|
| 276 |
+
f"{mode_note}\n\n"
|
| 277 |
+
f"{attack_narrative_header}\n" + "\n".join(attack_lines) + "\n\n" + defense_header + "\n" + "\n".join(defense_lines)
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if turns_so_far == 0:
|
| 281 |
+
response += mcp_note
|
| 282 |
+
|
| 283 |
+
response += user_hint
|
| 284 |
+
|
| 285 |
+
return response
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def register_sources(files, url, current_sources):
|
| 289 |
+
"""Update the in-app list of sources (files/URLs) for the left panel.
|
| 290 |
+
|
| 291 |
+
This is a lightweight placeholder; later we can extend it to track types,
|
| 292 |
+
tags, and whether a source is used for retrieval vs attack-target testing.
|
| 293 |
+
"""
|
| 294 |
+
|
| 295 |
+
sources = list(current_sources or [])
|
| 296 |
+
|
| 297 |
+
if files:
|
| 298 |
+
for f in files:
|
| 299 |
+
name = getattr(f, "name", "uploaded") # Gradio File objects expose `.name`
|
| 300 |
+
sources.append({"type": "file", "name": name})
|
| 301 |
+
|
| 302 |
+
if url and url.strip():
|
| 303 |
+
sources.append({"type": "url", "name": url.strip()})
|
| 304 |
+
|
| 305 |
+
# Return updated state, and reset file + URL inputs
|
| 306 |
+
return sources, None, "", sources
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
with gr.Blocks(fill_height=True) as demo:
|
| 310 |
+
gr.Markdown(f"# {APP_TITLE}")
|
| 311 |
+
gr.Markdown(INTRO_MD)
|
| 312 |
+
|
| 313 |
+
with gr.Row(equal_height=True):
|
| 314 |
+
# Sources / NotebookLM-style left panel
|
| 315 |
+
with gr.Column(scale=1):
|
| 316 |
+
gr.Markdown("## Sources\nManage uploaded files, URLs, MITRE docs, and Hugging Face assets.")
|
| 317 |
+
source_files = gr.File(label="Upload sources", file_count="multiple")
|
| 318 |
+
source_url = gr.Textbox(label="Add URL source", placeholder="https://attack.mitre.org/...")
|
| 319 |
+
add_source = gr.Button("Add source")
|
| 320 |
+
sources_state = gr.State([])
|
| 321 |
+
sources_view = gr.JSON(label="Current sources (preview)", value=[])
|
| 322 |
+
|
| 323 |
+
# Center chat panel
|
| 324 |
+
with gr.Column(scale=2):
|
| 325 |
+
gr.Markdown("## Chat")
|
| 326 |
+
with gr.Row():
|
| 327 |
+
target_input = gr.Textbox(
|
| 328 |
+
label="Target / system name (optional)",
|
| 329 |
+
placeholder="e.g., airbnb (HackerOne), internal CRM, DeFi dapp",
|
| 330 |
+
scale=2,
|
| 331 |
+
)
|
| 332 |
+
mode_input = gr.Dropdown(
|
| 333 |
+
["Mixed", "Red-team simulation", "Blue-team defense"],
|
| 334 |
+
value="Mixed",
|
| 335 |
+
label="Mode",
|
| 336 |
+
scale=1,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
detail_level_input = gr.Radio(
|
| 340 |
+
["High-level summary", "Step-by-step plan"],
|
| 341 |
+
value="High-level summary",
|
| 342 |
+
label="Detail level",
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
chatbot = gr.Chatbot(label="Cyber Vibe dialogue")
|
| 346 |
+
msg = gr.Textbox(
|
| 347 |
+
label="Describe your scenario or question",
|
| 348 |
+
placeholder=(
|
| 349 |
+
"Describe a system and what you want to explore from a cyber 'vibe hacking' "
|
| 350 |
+
"perspective..."
|
| 351 |
+
),
|
| 352 |
+
)
|
| 353 |
+
clear = gr.Button("Clear conversation")
|
| 354 |
+
|
| 355 |
+
# Right Studio panel
|
| 356 |
+
with gr.Column(scale=1):
|
| 357 |
+
gr.Markdown("## Studio\nAttack-chain mind map, timeline, and reports.")
|
| 358 |
+
studio_plot = gr.Plot(
|
| 359 |
+
label="Attack chain overview",
|
| 360 |
+
value=build_attack_chain_figure([]),
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
attack_turns_state = gr.State([])
|
| 364 |
+
|
| 365 |
+
def respond(user_message, chat_history, target, mode, detail_level, attack_turns):
|
| 366 |
+
if chat_history is None:
|
| 367 |
+
chat_history = []
|
| 368 |
+
reply = cyber_vibe_agent(user_message, chat_history, target, mode, detail_level)
|
| 369 |
+
chat_history = chat_history + [(user_message, reply)]
|
| 370 |
+
|
| 371 |
+
turns = list(attack_turns or [])
|
| 372 |
+
stage_id = classify_stage(user_message)
|
| 373 |
+
turns.append({"text": user_message, "stage_id": stage_id})
|
| 374 |
+
fig = build_attack_chain_figure(turns)
|
| 375 |
+
|
| 376 |
+
return "", chat_history, turns, fig
|
| 377 |
+
|
| 378 |
+
msg.submit(
|
| 379 |
+
respond,
|
| 380 |
+
inputs=[msg, chatbot, target_input, mode_input, detail_level_input, attack_turns_state],
|
| 381 |
+
outputs=[msg, chatbot, attack_turns_state, studio_plot],
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
clear.click(
|
| 385 |
+
lambda: ([], "", [], build_attack_chain_figure([])),
|
| 386 |
+
inputs=None,
|
| 387 |
+
outputs=[chatbot, msg, attack_turns_state, studio_plot],
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
add_source.click(
|
| 391 |
+
register_sources,
|
| 392 |
+
inputs=[source_files, source_url, sources_state],
|
| 393 |
+
outputs=[sources_state, source_files, source_url, sources_view],
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
demo.launch()
|
data-utils/hackerone_scraper.py
ADDED
|
@@ -0,0 +1,794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Scrape HackerOne opportunities and program scope using crawl4ai + BeautifulSoup.
|
| 2 |
+
|
| 3 |
+
Usage (from repo root):
|
| 4 |
+
|
| 5 |
+
python -m data-utils.hackerone_scraper --limit 10
|
| 6 |
+
|
| 7 |
+
This will:
|
| 8 |
+
- Load the public Opportunities page.
|
| 9 |
+
- Collect all cards with a "See details" link.
|
| 10 |
+
- For each program, visit its main page and scope page.
|
| 11 |
+
- Extract program metadata, rewards, stats, and scope assets (with a focus on
|
| 12 |
+
assets that are both "In scope" and "Eligible").
|
| 13 |
+
- Download the Burp Suite Project Configuration file when available.
|
| 14 |
+
- Store everything as JSON under `data/hackerone/`.
|
| 15 |
+
|
| 16 |
+
Be sure your use complies with HackerOne's terms and robots.txt.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from __future__ import annotations
|
| 20 |
+
|
| 21 |
+
import argparse
|
| 22 |
+
import asyncio
|
| 23 |
+
import json
|
| 24 |
+
from dataclasses import asdict, dataclass, field
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
| 27 |
+
from urllib.error import HTTPError, URLError
|
| 28 |
+
from urllib.parse import urljoin, urlparse
|
| 29 |
+
from urllib.request import Request, urlopen
|
| 30 |
+
|
| 31 |
+
from bs4 import BeautifulSoup
|
| 32 |
+
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode, JsonCssExtractionStrategy
|
| 33 |
+
from playwright.async_api import async_playwright
|
| 34 |
+
|
| 35 |
+
BASE_URL = "https://hackerone.com"
|
| 36 |
+
OPPORTUNITIES_URL = f"{BASE_URL}/opportunities/all"
|
| 37 |
+
OPPORTUNITIES_SEARCH_URL = f"{BASE_URL}/opportunities/all/search"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# ---------------------------------------------------------------------------
|
| 41 |
+
# Data models
|
| 42 |
+
# ---------------------------------------------------------------------------
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class ScopeAsset:
|
| 47 |
+
asset_name: str
|
| 48 |
+
impact_scope: Optional[str]
|
| 49 |
+
asset_type: str
|
| 50 |
+
coverage: str
|
| 51 |
+
max_severity: str
|
| 52 |
+
bounty_eligibility: str
|
| 53 |
+
last_update: str
|
| 54 |
+
resolved_reports: str
|
| 55 |
+
attack_surface: List[str] = field(default_factory=list)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@dataclass
|
| 59 |
+
class ProgramRecord:
|
| 60 |
+
slug: str
|
| 61 |
+
name: Optional[str]
|
| 62 |
+
detail_url: str
|
| 63 |
+
website_url: Optional[str] = None
|
| 64 |
+
reward_summary_card: Optional[str] = None
|
| 65 |
+
rewards_table: Dict[str, Any] = field(default_factory=dict)
|
| 66 |
+
stats: Dict[str, Any] = field(default_factory=dict)
|
| 67 |
+
scope_assets: List[ScopeAsset] = field(default_factory=list)
|
| 68 |
+
eligible_assets: List[ScopeAsset] = field(default_factory=list)
|
| 69 |
+
burp_config_path: Optional[str] = None
|
| 70 |
+
attack_surface_summary_all: Dict[str, int] = field(default_factory=dict)
|
| 71 |
+
attack_surface_summary_eligible: Dict[str, int] = field(default_factory=dict)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
ATTACK_SURFACE_CATEGORIES = (
|
| 75 |
+
"web_app",
|
| 76 |
+
"database",
|
| 77 |
+
"internal_network",
|
| 78 |
+
"cloud_infra",
|
| 79 |
+
"appliance",
|
| 80 |
+
"other",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def infer_attack_surface(asset: ScopeAsset) -> List[str]:
|
| 85 |
+
categories: List[str] = []
|
| 86 |
+
t = asset.asset_type.lower()
|
| 87 |
+
name = asset.asset_name.lower()
|
| 88 |
+
|
| 89 |
+
if (
|
| 90 |
+
any(kw in t for kw in ("domain", "url", "web", "website", "api", "host"))
|
| 91 |
+
or any(name.endswith(ext) for ext in (".com", ".net", ".org", ".io", ".co", ".app"))
|
| 92 |
+
or "http://" in name
|
| 93 |
+
or "https://" in name
|
| 94 |
+
or "app store" in t
|
| 95 |
+
or "play store" in t
|
| 96 |
+
):
|
| 97 |
+
categories.append("web_app")
|
| 98 |
+
|
| 99 |
+
if any(kw in t for kw in ("database", "db")) or any(
|
| 100 |
+
kw in name for kw in ("mysql", "postgres", "pgsql", "oracle", "mongo", "redis", "sql", "db")
|
| 101 |
+
):
|
| 102 |
+
categories.append("database")
|
| 103 |
+
|
| 104 |
+
if "cidr" in t or any(
|
| 105 |
+
kw in name for kw in ("cidr", "intranet", "vpn", "lan", "10.", "192.168.", "172.16.")
|
| 106 |
+
):
|
| 107 |
+
categories.append("internal_network")
|
| 108 |
+
|
| 109 |
+
if any(kw in t for kw in ("cloud", "storage", "bucket")) or any(
|
| 110 |
+
kw in name
|
| 111 |
+
for kw in ("s3", "ec2", "gcp", "azure", "digitalocean", "linode", "cloudfront", "cloudflare")
|
| 112 |
+
):
|
| 113 |
+
categories.append("cloud_infra")
|
| 114 |
+
|
| 115 |
+
if "hardware" in t or any(
|
| 116 |
+
kw in name for kw in ("router", "switch", "firewall", "iot", "device", "appliance")
|
| 117 |
+
):
|
| 118 |
+
categories.append("appliance")
|
| 119 |
+
|
| 120 |
+
if not categories:
|
| 121 |
+
categories.append("other")
|
| 122 |
+
|
| 123 |
+
return categories
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def summarize_attack_surface(assets: List[ScopeAsset]) -> Dict[str, int]:
|
| 127 |
+
summary: Dict[str, int] = {}
|
| 128 |
+
for asset in assets:
|
| 129 |
+
for cat in asset.attack_surface:
|
| 130 |
+
summary[cat] = summary.get(cat, 0) + 1
|
| 131 |
+
return summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# ---------------------------------------------------------------------------
|
| 135 |
+
# Paths & helpers
|
| 136 |
+
# ---------------------------------------------------------------------------
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def repo_root() -> Path:
|
| 140 |
+
"""Assume this file lives in `data-utils/` under the repo root."""
|
| 141 |
+
|
| 142 |
+
return Path(__file__).resolve().parents[1]
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def output_dirs() -> Dict[str, Path]:
|
| 146 |
+
root = repo_root()
|
| 147 |
+
base = root / "data" / "hackerone"
|
| 148 |
+
programs_dir = base / "programs"
|
| 149 |
+
burp_dir = base / "burp_configs"
|
| 150 |
+
debug_dir = base / "debug"
|
| 151 |
+
programs_dir.mkdir(parents=True, exist_ok=True)
|
| 152 |
+
burp_dir.mkdir(parents=True, exist_ok=True)
|
| 153 |
+
debug_dir.mkdir(parents=True, exist_ok=True)
|
| 154 |
+
return {"base": base, "programs": programs_dir, "burp": burp_dir, "debug": debug_dir}
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def slug_from_program_url(url: str) -> str:
|
| 158 |
+
parsed = urlparse(url)
|
| 159 |
+
path = parsed.path.strip("/")
|
| 160 |
+
if not path:
|
| 161 |
+
return "program"
|
| 162 |
+
slug = path.split("/")[-1]
|
| 163 |
+
slug = slug.split("?")[0]
|
| 164 |
+
safe = [c if (c.isalnum() or c in ("-", "_")) else "_" for c in slug]
|
| 165 |
+
return "".join(safe) or "program"
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# ---------------------------------------------------------------------------
|
| 169 |
+
# Network / crawling helpers
|
| 170 |
+
# ---------------------------------------------------------------------------
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
async def fetch_html(
|
| 174 |
+
crawler: AsyncWebCrawler,
|
| 175 |
+
url: str,
|
| 176 |
+
*,
|
| 177 |
+
debug_label: Optional[str] = None,
|
| 178 |
+
) -> Optional[str]:
|
| 179 |
+
"""Fetch rendered HTML for a URL using crawl4ai with explicit config.
|
| 180 |
+
|
| 181 |
+
- Uses CacheMode.BYPASS to always get fresh content for dynamic SPA pages.
|
| 182 |
+
- Optionally writes a debug HTML snapshot under data/hackerone/debug/.
|
| 183 |
+
- Logs basic diagnostics (length and presence of key markers).
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
run_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
|
| 187 |
+
|
| 188 |
+
result = await crawler.arun(url=url, config=run_config)
|
| 189 |
+
if not result.success:
|
| 190 |
+
error_msg = getattr(result, "error", getattr(result, "error_message", "unknown error"))
|
| 191 |
+
print(f"[WARN] crawl failed for {url}: {error_msg}")
|
| 192 |
+
return None
|
| 193 |
+
|
| 194 |
+
html = result.html or ""
|
| 195 |
+
print(f"[DEBUG] fetch_html: url={url} length={len(html)} chars")
|
| 196 |
+
|
| 197 |
+
if debug_label:
|
| 198 |
+
try:
|
| 199 |
+
dirs = output_dirs()
|
| 200 |
+
debug_dir = dirs["debug"]
|
| 201 |
+
filename = debug_label if debug_label.endswith(".html") else f"{debug_label}.html"
|
| 202 |
+
debug_path = debug_dir / filename
|
| 203 |
+
debug_path.write_text(html, encoding="utf-8")
|
| 204 |
+
print(f"[DEBUG] Saved HTML snapshot for {url} -> {debug_path}")
|
| 205 |
+
except Exception as exc: # pragma: no cover - diagnostics only
|
| 206 |
+
print(f"[WARN] Failed to save debug HTML for {url}: {exc}")
|
| 207 |
+
|
| 208 |
+
if "See details" in html:
|
| 209 |
+
print(f"[DEBUG] fetch_html: 'See details' marker present in HTML for {url}")
|
| 210 |
+
|
| 211 |
+
return html
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def download_url(url: str, dest: Path) -> Optional[Path]:
|
| 215 |
+
try:
|
| 216 |
+
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
|
| 217 |
+
with urlopen(req, timeout=30) as resp: # type: ignore[arg-type]
|
| 218 |
+
data = resp.read()
|
| 219 |
+
dest.write_bytes(data)
|
| 220 |
+
return dest
|
| 221 |
+
except (HTTPError, URLError, TimeoutError) as exc: # pragma: no cover
|
| 222 |
+
print(f"[WARN] failed to download {url}: {exc}")
|
| 223 |
+
return None
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# ---------------------------------------------------------------------------
|
| 227 |
+
# HTML parsing helpers
|
| 228 |
+
# ---------------------------------------------------------------------------
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def parse_opportunity_cards(html: str) -> List[Dict[str, Any]]:
|
| 232 |
+
"""Return a list of dicts describing each program card with a details link."""
|
| 233 |
+
|
| 234 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 235 |
+
cards_by_url: Dict[str, Dict[str, Any]] = {}
|
| 236 |
+
|
| 237 |
+
articles = soup.find_all("article")
|
| 238 |
+
print(f"[DEBUG] parse_opportunity_cards: found {len(articles)} <article> elements")
|
| 239 |
+
|
| 240 |
+
# Primary strategy: cards rendered as <article> blocks containing a link to
|
| 241 |
+
# a team page (href ending with ?type=team). This is more robust than
|
| 242 |
+
# relying on the visible "See details" text, which may differ between
|
| 243 |
+
# views.
|
| 244 |
+
per_article_team_links = 0
|
| 245 |
+
for article in articles:
|
| 246 |
+
details_link = article.find(
|
| 247 |
+
"a",
|
| 248 |
+
href=lambda h: isinstance(h, str) and "?type=team" in h,
|
| 249 |
+
)
|
| 250 |
+
if not details_link or not details_link.get("href"):
|
| 251 |
+
continue
|
| 252 |
+
|
| 253 |
+
per_article_team_links += 1
|
| 254 |
+
detail_url = urljoin(BASE_URL, details_link["href"])
|
| 255 |
+
if detail_url in cards_by_url:
|
| 256 |
+
continue
|
| 257 |
+
|
| 258 |
+
img = article.find("img", alt=True)
|
| 259 |
+
name = (img.get("alt") or "").strip() if img else None
|
| 260 |
+
|
| 261 |
+
reward_summary = None
|
| 262 |
+
for txt in article.stripped_strings:
|
| 263 |
+
if "$" in txt and "-" in txt:
|
| 264 |
+
reward_summary = txt
|
| 265 |
+
break
|
| 266 |
+
|
| 267 |
+
cards_by_url[detail_url] = {
|
| 268 |
+
"name": name,
|
| 269 |
+
"detail_url": detail_url,
|
| 270 |
+
"reward_summary": reward_summary,
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
print(
|
| 274 |
+
f"[DEBUG] parse_opportunity_cards: found {per_article_team_links} '?type=team' links inside <article> elements"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# Fallback strategy: any '?type=team' links anywhere in the document.
|
| 278 |
+
team_links = soup.find_all(
|
| 279 |
+
"a",
|
| 280 |
+
href=lambda h: isinstance(h, str) and "?type=team" in h,
|
| 281 |
+
)
|
| 282 |
+
print(
|
| 283 |
+
f"[DEBUG] parse_opportunity_cards: found {len(team_links)} '?type=team' links total in document"
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
for a in team_links:
|
| 287 |
+
href = a.get("href")
|
| 288 |
+
if not href:
|
| 289 |
+
continue
|
| 290 |
+
detail_url = urljoin(BASE_URL, href)
|
| 291 |
+
if detail_url in cards_by_url:
|
| 292 |
+
continue
|
| 293 |
+
|
| 294 |
+
container = a.find_parent("article") or a.find_parent("div")
|
| 295 |
+
img = container.find("img", alt=True) if container else None
|
| 296 |
+
name = (img.get("alt") or "").strip() if img else None
|
| 297 |
+
|
| 298 |
+
reward_summary = None
|
| 299 |
+
if container is not None:
|
| 300 |
+
for txt in container.stripped_strings:
|
| 301 |
+
if "$" in txt and "-" in txt:
|
| 302 |
+
reward_summary = txt
|
| 303 |
+
break
|
| 304 |
+
|
| 305 |
+
cards_by_url[detail_url] = {
|
| 306 |
+
"name": name,
|
| 307 |
+
"detail_url": detail_url,
|
| 308 |
+
"reward_summary": reward_summary,
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
cards = list(cards_by_url.values())
|
| 312 |
+
print(f"[DEBUG] parse_opportunity_cards: returning {len(cards)} cards")
|
| 313 |
+
if not cards:
|
| 314 |
+
print("[DEBUG] parse_opportunity_cards: no cards extracted from HTML")
|
| 315 |
+
|
| 316 |
+
return cards
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
async def extract_opportunity_cards_via_json(
|
| 320 |
+
crawler: AsyncWebCrawler,
|
| 321 |
+
url: str,
|
| 322 |
+
page_label: str,
|
| 323 |
+
) -> List[Dict[str, Any]]:
|
| 324 |
+
"""Use crawl4ai's JsonCssExtractionStrategy to extract opportunity cards.
|
| 325 |
+
|
| 326 |
+
This avoids relying on `result.html` for SPA content and instead uses the
|
| 327 |
+
DOM that Playwright sees inside crawl4ai.
|
| 328 |
+
"""
|
| 329 |
+
|
| 330 |
+
schema = {
|
| 331 |
+
"name": "HackerOneOpportunities",
|
| 332 |
+
"baseSelector": "article",
|
| 333 |
+
"fields": [
|
| 334 |
+
{
|
| 335 |
+
"name": "detail_href",
|
| 336 |
+
"selector": 'a[href*="?type=team"]',
|
| 337 |
+
"type": "attribute",
|
| 338 |
+
"attribute": "href",
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"name": "name",
|
| 342 |
+
"selector": "img[alt]",
|
| 343 |
+
"type": "attribute",
|
| 344 |
+
"attribute": "alt",
|
| 345 |
+
},
|
| 346 |
+
],
|
| 347 |
+
}
|
| 348 |
+
|
| 349 |
+
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=False)
|
| 350 |
+
|
| 351 |
+
# Prefer a config that waits for the SPA cards to render before extracting.
|
| 352 |
+
try:
|
| 353 |
+
run_config = CrawlerRunConfig(
|
| 354 |
+
cache_mode=CacheMode.BYPASS,
|
| 355 |
+
extraction_strategy=extraction_strategy,
|
| 356 |
+
# Wait for at least one program card link to appear in the DOM.
|
| 357 |
+
wait_for_selector='article a[href*="?type=team"]',
|
| 358 |
+
timeout=30_000,
|
| 359 |
+
)
|
| 360 |
+
except TypeError:
|
| 361 |
+
# Older crawl4ai versions may not support wait_for_selector/timeout.
|
| 362 |
+
print(
|
| 363 |
+
"[WARN] CrawlerRunConfig does not support wait_for_selector/timeout; "
|
| 364 |
+
"falling back to basic config. Consider upgrading crawl4ai for SPA pages."
|
| 365 |
+
)
|
| 366 |
+
run_config = CrawlerRunConfig(
|
| 367 |
+
cache_mode=CacheMode.BYPASS,
|
| 368 |
+
extraction_strategy=extraction_strategy,
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
print(f"[INFO] JSON extracting opportunity cards from {url} ({page_label})")
|
| 372 |
+
result = await crawler.arun(url=url, config=run_config)
|
| 373 |
+
if not result.success:
|
| 374 |
+
error_msg = getattr(result, "error", getattr(result, "error_message", "unknown error"))
|
| 375 |
+
print(f"[WARN] JSON extraction failed for {url}: {error_msg}")
|
| 376 |
+
return []
|
| 377 |
+
|
| 378 |
+
if not getattr(result, "extracted_content", None):
|
| 379 |
+
print(f"[DEBUG] extract_opportunity_cards_via_json: no extracted_content for {url}")
|
| 380 |
+
return []
|
| 381 |
+
|
| 382 |
+
try:
|
| 383 |
+
raw_items = json.loads(result.extracted_content)
|
| 384 |
+
except Exception as exc:
|
| 385 |
+
print(f"[WARN] Failed to decode extracted_content for {url}: {exc}")
|
| 386 |
+
return []
|
| 387 |
+
|
| 388 |
+
cards: List[Dict[str, Any]] = []
|
| 389 |
+
for item in raw_items:
|
| 390 |
+
href = (item.get("detail_href") or "").strip()
|
| 391 |
+
if not href:
|
| 392 |
+
continue
|
| 393 |
+
# Focus on team program pages (bug bounty programs and VDP teams)
|
| 394 |
+
detail_url = urljoin(BASE_URL, href)
|
| 395 |
+
name = (item.get("name") or "").strip() or None
|
| 396 |
+
|
| 397 |
+
cards.append(
|
| 398 |
+
{
|
| 399 |
+
"name": name,
|
| 400 |
+
"detail_url": detail_url,
|
| 401 |
+
"reward_summary": None,
|
| 402 |
+
}
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
print(f"[INFO] extract_opportunity_cards_via_json[{page_label}]: produced {len(cards)} cards")
|
| 406 |
+
return cards
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
async def gather_opportunity_cards_with_playwright(
|
| 410 |
+
max_pages: int = 10,
|
| 411 |
+
) -> List[Dict[str, Any]]:
|
| 412 |
+
"""Fallback: use Playwright directly to gather opportunity cards.
|
| 413 |
+
|
| 414 |
+
This bypasses crawl4ai's HTML/extraction pipeline for the listing pages,
|
| 415 |
+
but still relies on the same parse_opportunity_cards() logic and feeds
|
| 416 |
+
ProgramRecord scraping as before.
|
| 417 |
+
"""
|
| 418 |
+
|
| 419 |
+
cards: List[Dict[str, Any]] = []
|
| 420 |
+
seen: Dict[str, Dict[str, Any]] = {}
|
| 421 |
+
|
| 422 |
+
async with async_playwright() as p:
|
| 423 |
+
browser = await p.chromium.launch(headless=True)
|
| 424 |
+
page = await browser.new_page()
|
| 425 |
+
|
| 426 |
+
# Main overview page
|
| 427 |
+
print("[INFO] Playwright fallback: loading opportunities overview page")
|
| 428 |
+
await page.goto(OPPORTUNITIES_URL, wait_until="networkidle")
|
| 429 |
+
html = await page.content()
|
| 430 |
+
index_cards = parse_opportunity_cards(html)
|
| 431 |
+
print(
|
| 432 |
+
f"[INFO] Playwright fallback: main page produced {len(index_cards)} cards"
|
| 433 |
+
)
|
| 434 |
+
for card in index_cards:
|
| 435 |
+
url = card["detail_url"]
|
| 436 |
+
if url not in seen:
|
| 437 |
+
seen[url] = card
|
| 438 |
+
cards.append(card)
|
| 439 |
+
|
| 440 |
+
# Paginated search pages
|
| 441 |
+
for page_no in range(1, max_pages + 1):
|
| 442 |
+
search_url = f"{OPPORTUNITIES_SEARCH_URL}?bbp=true&page={page_no}"
|
| 443 |
+
print(
|
| 444 |
+
f"[INFO] Playwright fallback: loading search page {page_no}: {search_url}"
|
| 445 |
+
)
|
| 446 |
+
await page.goto(search_url, wait_until="networkidle")
|
| 447 |
+
html = await page.content()
|
| 448 |
+
page_cards = parse_opportunity_cards(html)
|
| 449 |
+
if not page_cards:
|
| 450 |
+
print(
|
| 451 |
+
f"[INFO] Playwright fallback: no cards on search page {page_no}; stopping pagination."
|
| 452 |
+
)
|
| 453 |
+
break
|
| 454 |
+
|
| 455 |
+
new_count = 0
|
| 456 |
+
for card in page_cards:
|
| 457 |
+
url = card["detail_url"]
|
| 458 |
+
if url not in seen:
|
| 459 |
+
seen[url] = card
|
| 460 |
+
cards.append(card)
|
| 461 |
+
new_count += 1
|
| 462 |
+
|
| 463 |
+
if new_count == 0:
|
| 464 |
+
print(
|
| 465 |
+
f"[INFO] Playwright fallback: no new cards on search page {page_no}; stopping pagination."
|
| 466 |
+
)
|
| 467 |
+
break
|
| 468 |
+
|
| 469 |
+
await browser.close()
|
| 470 |
+
|
| 471 |
+
print(f"[INFO] Playwright fallback: total unique cards collected = {len(cards)}")
|
| 472 |
+
return cards
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
async def gather_all_opportunity_cards(
|
| 476 |
+
crawler: AsyncWebCrawler,
|
| 477 |
+
max_pages: int = 10,
|
| 478 |
+
) -> List[Dict[str, Any]]:
|
| 479 |
+
"""Collect cards from the main opportunities page and paginated search.
|
| 480 |
+
|
| 481 |
+
We first scrape /opportunities/all, then iterate over
|
| 482 |
+
/opportunities/all/search?bbp=true&page=N until no new cards appear or
|
| 483 |
+
max_pages is reached. This focuses on public bug bounty programs.
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
cards: List[Dict[str, Any]] = []
|
| 487 |
+
seen: Dict[str, Dict[str, Any]] = {}
|
| 488 |
+
|
| 489 |
+
# Main overview page (popular campaigns & recommendations)
|
| 490 |
+
index_cards = await extract_opportunity_cards_via_json(
|
| 491 |
+
crawler,
|
| 492 |
+
OPPORTUNITIES_URL,
|
| 493 |
+
page_label="opportunities_all",
|
| 494 |
+
)
|
| 495 |
+
print(f"[INFO] gather_all_opportunity_cards: main page produced {len(index_cards)} cards")
|
| 496 |
+
for card in index_cards:
|
| 497 |
+
url = card["detail_url"]
|
| 498 |
+
if url not in seen:
|
| 499 |
+
seen[url] = card
|
| 500 |
+
cards.append(card)
|
| 501 |
+
|
| 502 |
+
# Paginated search for bug bounty programs
|
| 503 |
+
for page in range(1, max_pages + 1):
|
| 504 |
+
search_url = f"{OPPORTUNITIES_SEARCH_URL}?bbp=true&page={page}"
|
| 505 |
+
print(f"[INFO] Fetching search page {page}: {search_url}")
|
| 506 |
+
page_cards = await extract_opportunity_cards_via_json(
|
| 507 |
+
crawler,
|
| 508 |
+
search_url,
|
| 509 |
+
page_label=f"opportunities_search_page_{page}",
|
| 510 |
+
)
|
| 511 |
+
if not page_cards:
|
| 512 |
+
print(f"[INFO] No cards parsed on search page {page}; stopping pagination.")
|
| 513 |
+
break
|
| 514 |
+
|
| 515 |
+
new_count = 0
|
| 516 |
+
for card in page_cards:
|
| 517 |
+
url = card["detail_url"]
|
| 518 |
+
if url not in seen:
|
| 519 |
+
seen[url] = card
|
| 520 |
+
cards.append(card)
|
| 521 |
+
new_count += 1
|
| 522 |
+
|
| 523 |
+
if new_count == 0:
|
| 524 |
+
# No new programs discovered on this page; assume we've exhausted results.
|
| 525 |
+
break
|
| 526 |
+
|
| 527 |
+
return cards
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def extract_first_external_link(soup: BeautifulSoup) -> Optional[str]:
|
| 531 |
+
for a in soup.find_all("a", href=True):
|
| 532 |
+
href = a["href"]
|
| 533 |
+
if href.startswith("http") and "hackerone.com" not in href:
|
| 534 |
+
return href
|
| 535 |
+
return None
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def extract_kv_table_after_heading(soup: BeautifulSoup, heading_substring: str) -> Dict[str, Any]:
|
| 539 |
+
heading = soup.find(
|
| 540 |
+
lambda tag: tag.name in ("h1", "h2", "h3")
|
| 541 |
+
and heading_substring.lower() in tag.get_text(strip=True).lower()
|
| 542 |
+
)
|
| 543 |
+
if not heading:
|
| 544 |
+
return {}
|
| 545 |
+
|
| 546 |
+
table = heading.find_next("table")
|
| 547 |
+
if not table:
|
| 548 |
+
return {}
|
| 549 |
+
|
| 550 |
+
result: Dict[str, Any] = {}
|
| 551 |
+
for row in table.find_all("tr"):
|
| 552 |
+
cells = row.find_all(["th", "td"])
|
| 553 |
+
if len(cells) < 2:
|
| 554 |
+
continue
|
| 555 |
+
key = cells[0].get_text(" ", strip=True)
|
| 556 |
+
value = cells[1].get_text(" ", strip=True)
|
| 557 |
+
if key:
|
| 558 |
+
result[key] = value
|
| 559 |
+
return result
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
def parse_program_page(html: str) -> Tuple[Optional[str], Optional[str], Dict[str, Any], Dict[str, Any]]:
|
| 563 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 564 |
+
|
| 565 |
+
name = None
|
| 566 |
+
title = soup.find("h1")
|
| 567 |
+
if title:
|
| 568 |
+
name = title.get_text(" ", strip=True)
|
| 569 |
+
|
| 570 |
+
website = extract_first_external_link(soup)
|
| 571 |
+
|
| 572 |
+
rewards = extract_kv_table_after_heading(soup, "Rewards summary")
|
| 573 |
+
stats = extract_kv_table_after_heading(soup, "Stats")
|
| 574 |
+
|
| 575 |
+
return name, website, rewards, stats
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def parse_scope_table(html: str) -> Tuple[List[ScopeAsset], List[ScopeAsset], Optional[str]]:
|
| 579 |
+
"""Parse the scope table and Burp Suite link.
|
| 580 |
+
|
| 581 |
+
Returns (all_assets, eligible_assets, burp_url).
|
| 582 |
+
"""
|
| 583 |
+
|
| 584 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 585 |
+
|
| 586 |
+
burp_link = soup.find(
|
| 587 |
+
"a",
|
| 588 |
+
string=lambda s: isinstance(s, str)
|
| 589 |
+
and "Burp Suite Project Configuration File" in s,
|
| 590 |
+
)
|
| 591 |
+
burp_url = urljoin(BASE_URL, burp_link["href"]) if burp_link else None
|
| 592 |
+
|
| 593 |
+
table = None
|
| 594 |
+
for t in soup.find_all("table"):
|
| 595 |
+
header = t.find("tr")
|
| 596 |
+
if not header:
|
| 597 |
+
continue
|
| 598 |
+
hdr_text = header.get_text(" ", strip=True)
|
| 599 |
+
if all(key in hdr_text for key in ("Asset name", "Coverage", "Bounty")):
|
| 600 |
+
table = t
|
| 601 |
+
break
|
| 602 |
+
|
| 603 |
+
all_assets: List[ScopeAsset] = []
|
| 604 |
+
eligible: List[ScopeAsset] = []
|
| 605 |
+
|
| 606 |
+
if not table:
|
| 607 |
+
return all_assets, eligible, burp_url
|
| 608 |
+
|
| 609 |
+
for tr in table.find_all("tr")[1:]: # skip header
|
| 610 |
+
tds = tr.find_all("td")
|
| 611 |
+
if len(tds) < 7:
|
| 612 |
+
continue
|
| 613 |
+
|
| 614 |
+
name_cell = tds[0]
|
| 615 |
+
asset_name_el = name_cell.find("strong")
|
| 616 |
+
asset_name = (
|
| 617 |
+
asset_name_el.get_text(" ", strip=True)
|
| 618 |
+
if asset_name_el
|
| 619 |
+
else name_cell.get_text(" ", strip=True)
|
| 620 |
+
)
|
| 621 |
+
impact_scope = None
|
| 622 |
+
extra = [s for s in name_cell.stripped_strings]
|
| 623 |
+
if len(extra) > 1:
|
| 624 |
+
impact_scope = extra[1]
|
| 625 |
+
|
| 626 |
+
asset_type = tds[1].get_text(" ", strip=True)
|
| 627 |
+
coverage = tds[2].get_text(" ", strip=True)
|
| 628 |
+
max_severity = tds[3].get_text(" ", strip=True)
|
| 629 |
+
bounty_eligibility = tds[4].get_text(" ", strip=True)
|
| 630 |
+
last_update = tds[5].get_text(" ", strip=True)
|
| 631 |
+
resolved_reports = tds[6].get_text(" ", strip=True)
|
| 632 |
+
|
| 633 |
+
asset = ScopeAsset(
|
| 634 |
+
asset_name=asset_name,
|
| 635 |
+
impact_scope=impact_scope,
|
| 636 |
+
asset_type=asset_type,
|
| 637 |
+
coverage=coverage,
|
| 638 |
+
max_severity=max_severity,
|
| 639 |
+
bounty_eligibility=bounty_eligibility,
|
| 640 |
+
last_update=last_update,
|
| 641 |
+
resolved_reports=resolved_reports,
|
| 642 |
+
)
|
| 643 |
+
asset.attack_surface = infer_attack_surface(asset)
|
| 644 |
+
all_assets.append(asset)
|
| 645 |
+
|
| 646 |
+
if "in scope" in coverage.lower() and "eligible" in bounty_eligibility.lower():
|
| 647 |
+
eligible.append(asset)
|
| 648 |
+
|
| 649 |
+
return all_assets, eligible, burp_url
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
# ---------------------------------------------------------------------------
|
| 653 |
+
# Main scraping flow
|
| 654 |
+
# ---------------------------------------------------------------------------
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
async def scrape_programs(limit: Optional[int] = None, max_pages: int = 10) -> List[ProgramRecord]:
|
| 658 |
+
dirs = output_dirs()
|
| 659 |
+
|
| 660 |
+
async with AsyncWebCrawler() as crawler:
|
| 661 |
+
cards = await gather_all_opportunity_cards(crawler, max_pages=max_pages)
|
| 662 |
+
if not cards:
|
| 663 |
+
print(
|
| 664 |
+
"[WARN] crawl4ai-based extraction found no opportunity cards; "
|
| 665 |
+
"falling back to direct Playwright scraping for listings."
|
| 666 |
+
)
|
| 667 |
+
cards = await gather_opportunity_cards_with_playwright(max_pages=max_pages)
|
| 668 |
+
if not cards:
|
| 669 |
+
print("[ERROR] No opportunity cards found (even with Playwright fallback)")
|
| 670 |
+
return []
|
| 671 |
+
if limit is not None:
|
| 672 |
+
cards = cards[:limit]
|
| 673 |
+
|
| 674 |
+
programs: List[ProgramRecord] = []
|
| 675 |
+
|
| 676 |
+
for card in cards:
|
| 677 |
+
detail_url = card["detail_url"]
|
| 678 |
+
slug = slug_from_program_url(detail_url)
|
| 679 |
+
print(f"[INFO] Scraping {slug} -> {detail_url}")
|
| 680 |
+
|
| 681 |
+
main_html = await fetch_html(crawler, detail_url)
|
| 682 |
+
if not main_html:
|
| 683 |
+
continue
|
| 684 |
+
|
| 685 |
+
parsed = urlparse(detail_url)
|
| 686 |
+
scope_url = urljoin(BASE_URL, parsed.path.rstrip("/") + "/policy_scopes")
|
| 687 |
+
scope_html = await fetch_html(crawler, scope_url)
|
| 688 |
+
|
| 689 |
+
name, website, rewards, stats = parse_program_page(main_html)
|
| 690 |
+
|
| 691 |
+
all_assets: List[ScopeAsset] = []
|
| 692 |
+
eligible_assets: List[ScopeAsset] = []
|
| 693 |
+
burp_cfg_path: Optional[str] = None
|
| 694 |
+
|
| 695 |
+
if scope_html:
|
| 696 |
+
all_assets, eligible_assets, burp_url = parse_scope_table(scope_html)
|
| 697 |
+
|
| 698 |
+
if burp_url:
|
| 699 |
+
dest = dirs["burp"] / f"{slug}.json"
|
| 700 |
+
downloaded = download_url(burp_url, dest)
|
| 701 |
+
if downloaded is not None:
|
| 702 |
+
burp_cfg_path = str(downloaded.relative_to(repo_root()))
|
| 703 |
+
|
| 704 |
+
record = ProgramRecord(
|
| 705 |
+
slug=slug,
|
| 706 |
+
name=name or card.get("name"),
|
| 707 |
+
detail_url=detail_url,
|
| 708 |
+
website_url=website,
|
| 709 |
+
reward_summary_card=card.get("reward_summary"),
|
| 710 |
+
rewards_table=rewards,
|
| 711 |
+
stats=stats,
|
| 712 |
+
scope_assets=all_assets,
|
| 713 |
+
eligible_assets=eligible_assets,
|
| 714 |
+
burp_config_path=burp_cfg_path,
|
| 715 |
+
attack_surface_summary_all=summarize_attack_surface(all_assets),
|
| 716 |
+
attack_surface_summary_eligible=summarize_attack_surface(eligible_assets),
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
program_path = dirs["programs"] / f"{slug}.json"
|
| 720 |
+
program_path.write_text(json.dumps(asdict(record), indent=2), encoding="utf-8")
|
| 721 |
+
|
| 722 |
+
programs.append(record)
|
| 723 |
+
|
| 724 |
+
index_path = dirs["base"] / "programs_index.json"
|
| 725 |
+
index_data = [
|
| 726 |
+
{
|
| 727 |
+
"slug": p.slug,
|
| 728 |
+
"name": p.name,
|
| 729 |
+
"detail_url": p.detail_url,
|
| 730 |
+
"website_url": p.website_url,
|
| 731 |
+
"eligible_assets_count": len(p.eligible_assets),
|
| 732 |
+
"burp_config_path": p.burp_config_path,
|
| 733 |
+
"attack_surfaces_all": p.attack_surface_summary_all,
|
| 734 |
+
"attack_surfaces_eligible": p.attack_surface_summary_eligible,
|
| 735 |
+
"targets": [
|
| 736 |
+
cat
|
| 737 |
+
for cat, count in p.attack_surface_summary_eligible.items()
|
| 738 |
+
if count > 0
|
| 739 |
+
],
|
| 740 |
+
}
|
| 741 |
+
for p in programs
|
| 742 |
+
]
|
| 743 |
+
index_path.write_text(json.dumps(index_data, indent=2), encoding="utf-8")
|
| 744 |
+
|
| 745 |
+
# Flattened index: one entry per eligible asset with attack-surface labels.
|
| 746 |
+
# This is convenient for LangChain / MCP agents to reason about targets.
|
| 747 |
+
surface_index_path = dirs["base"] / "attack_surface_index.json"
|
| 748 |
+
surface_index: List[Dict[str, Any]] = []
|
| 749 |
+
for p in programs:
|
| 750 |
+
for asset in p.eligible_assets:
|
| 751 |
+
surface_index.append(
|
| 752 |
+
{
|
| 753 |
+
"program_slug": p.slug,
|
| 754 |
+
"program_name": p.name,
|
| 755 |
+
"program_detail_url": p.detail_url,
|
| 756 |
+
"program_website_url": p.website_url,
|
| 757 |
+
"asset_name": asset.asset_name,
|
| 758 |
+
"impact_scope": asset.impact_scope,
|
| 759 |
+
"asset_type": asset.asset_type,
|
| 760 |
+
"coverage": asset.coverage,
|
| 761 |
+
"max_severity": asset.max_severity,
|
| 762 |
+
"bounty_eligibility": asset.bounty_eligibility,
|
| 763 |
+
"last_update": asset.last_update,
|
| 764 |
+
"resolved_reports": asset.resolved_reports,
|
| 765 |
+
"attack_surface": asset.attack_surface,
|
| 766 |
+
"targets": asset.attack_surface,
|
| 767 |
+
}
|
| 768 |
+
)
|
| 769 |
+
surface_index_path.write_text(json.dumps(surface_index, indent=2), encoding="utf-8")
|
| 770 |
+
|
| 771 |
+
return programs
|
| 772 |
+
|
| 773 |
+
|
| 774 |
+
def main(argv: Optional[Iterable[str]] = None) -> None:
|
| 775 |
+
parser = argparse.ArgumentParser(description="Scrape HackerOne opportunities & scopes")
|
| 776 |
+
parser.add_argument(
|
| 777 |
+
"--limit",
|
| 778 |
+
type=int,
|
| 779 |
+
default=None,
|
| 780 |
+
help="Max number of programs to scrape (default: all visible on main page)",
|
| 781 |
+
)
|
| 782 |
+
parser.add_argument(
|
| 783 |
+
"--max-pages",
|
| 784 |
+
type=int,
|
| 785 |
+
default=10,
|
| 786 |
+
help="Max number of paginated search result pages to crawl",
|
| 787 |
+
)
|
| 788 |
+
args = parser.parse_args(list(argv) if argv is not None else None)
|
| 789 |
+
|
| 790 |
+
asyncio.run(scrape_programs(limit=args.limit, max_pages=args.max_pages))
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
if __name__ == "__main__": # pragma: no cover
|
| 794 |
+
main()
|
data/hackerone/attack_surface_index.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[]
|
data/hackerone/programs/audible.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "audible",
|
| 3 |
+
"name": "audible",
|
| 4 |
+
"detail_url": "https://hackerone.com/audible?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/braze_inc.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "braze_inc",
|
| 3 |
+
"name": "braze_inc",
|
| 4 |
+
"detail_url": "https://hackerone.com/braze_inc?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/bumba_bbp.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "bumba_bbp",
|
| 3 |
+
"name": "bumba_bbp",
|
| 4 |
+
"detail_url": "https://hackerone.com/bumba_bbp?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/doordash.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "doordash",
|
| 3 |
+
"name": "doordash",
|
| 4 |
+
"detail_url": "https://hackerone.com/doordash?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/dyson.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "dyson",
|
| 3 |
+
"name": "dyson",
|
| 4 |
+
"detail_url": "https://hackerone.com/dyson?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/flipkart.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "flipkart",
|
| 3 |
+
"name": "flipkart",
|
| 4 |
+
"detail_url": "https://hackerone.com/flipkart?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/hubspot.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "hubspot",
|
| 3 |
+
"name": "hubspot",
|
| 4 |
+
"detail_url": "https://hackerone.com/hubspot?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/inspectorio.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "inspectorio",
|
| 3 |
+
"name": "inspectorio",
|
| 4 |
+
"detail_url": "https://hackerone.com/inspectorio?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/kong.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "kong",
|
| 3 |
+
"name": "kong",
|
| 4 |
+
"detail_url": "https://hackerone.com/kong?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/mpesa.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "mpesa",
|
| 3 |
+
"name": "mpesa",
|
| 4 |
+
"detail_url": "https://hackerone.com/mpesa?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/neon_bbp.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "neon_bbp",
|
| 3 |
+
"name": "neon_bbp",
|
| 4 |
+
"detail_url": "https://hackerone.com/neon_bbp?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/netscaler_public_program.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "netscaler_public_program",
|
| 3 |
+
"name": "netscaler_public_program",
|
| 4 |
+
"detail_url": "https://hackerone.com/netscaler_public_program?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/northerntechhq.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "northerntechhq",
|
| 3 |
+
"name": "northerntechhq",
|
| 4 |
+
"detail_url": "https://hackerone.com/northerntechhq?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/notion.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "notion",
|
| 3 |
+
"name": "notion",
|
| 4 |
+
"detail_url": "https://hackerone.com/notion?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/oppo_bbp.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "oppo_bbp",
|
| 3 |
+
"name": "oppo_bbp",
|
| 4 |
+
"detail_url": "https://hackerone.com/oppo_bbp?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/porsche.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "porsche",
|
| 3 |
+
"name": "porsche",
|
| 4 |
+
"detail_url": "https://hackerone.com/porsche?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/ripio.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "ripio",
|
| 3 |
+
"name": "ripio",
|
| 4 |
+
"detail_url": "https://hackerone.com/ripio?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/robinhood.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "robinhood",
|
| 3 |
+
"name": "robinhood",
|
| 4 |
+
"detail_url": "https://hackerone.com/robinhood?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/silabs.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "silabs",
|
| 3 |
+
"name": "silabs",
|
| 4 |
+
"detail_url": "https://hackerone.com/silabs?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/stripchat.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "stripchat",
|
| 3 |
+
"name": "stripchat",
|
| 4 |
+
"detail_url": "https://hackerone.com/stripchat?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/syfe_bbp.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "syfe_bbp",
|
| 3 |
+
"name": "syfe_bbp",
|
| 4 |
+
"detail_url": "https://hackerone.com/syfe_bbp?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/wallet_on_telegram.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "wallet_on_telegram",
|
| 3 |
+
"name": "wallet_on_telegram",
|
| 4 |
+
"detail_url": "https://hackerone.com/wallet_on_telegram?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/whoop_bug_bounty.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "whoop_bug_bounty",
|
| 3 |
+
"name": "whoop_bug_bounty",
|
| 4 |
+
"detail_url": "https://hackerone.com/whoop_bug_bounty?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs/zooplus.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"slug": "zooplus",
|
| 3 |
+
"name": "zooplus",
|
| 4 |
+
"detail_url": "https://hackerone.com/zooplus?type=team",
|
| 5 |
+
"website_url": null,
|
| 6 |
+
"reward_summary_card": null,
|
| 7 |
+
"rewards_table": {},
|
| 8 |
+
"stats": {},
|
| 9 |
+
"scope_assets": [],
|
| 10 |
+
"eligible_assets": [],
|
| 11 |
+
"burp_config_path": null,
|
| 12 |
+
"attack_surface_summary_all": {},
|
| 13 |
+
"attack_surface_summary_eligible": {}
|
| 14 |
+
}
|
data/hackerone/programs_index.json
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"slug": "northerntechhq",
|
| 4 |
+
"name": "northerntechhq",
|
| 5 |
+
"detail_url": "https://hackerone.com/northerntechhq?type=team",
|
| 6 |
+
"website_url": null,
|
| 7 |
+
"eligible_assets_count": 0,
|
| 8 |
+
"burp_config_path": null,
|
| 9 |
+
"attack_surfaces_all": {},
|
| 10 |
+
"attack_surfaces_eligible": {},
|
| 11 |
+
"targets": []
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"slug": "notion",
|
| 15 |
+
"name": "notion",
|
| 16 |
+
"detail_url": "https://hackerone.com/notion?type=team",
|
| 17 |
+
"website_url": null,
|
| 18 |
+
"eligible_assets_count": 0,
|
| 19 |
+
"burp_config_path": null,
|
| 20 |
+
"attack_surfaces_all": {},
|
| 21 |
+
"attack_surfaces_eligible": {},
|
| 22 |
+
"targets": []
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"slug": "stripchat",
|
| 26 |
+
"name": "stripchat",
|
| 27 |
+
"detail_url": "https://hackerone.com/stripchat?type=team",
|
| 28 |
+
"website_url": null,
|
| 29 |
+
"eligible_assets_count": 0,
|
| 30 |
+
"burp_config_path": null,
|
| 31 |
+
"attack_surfaces_all": {},
|
| 32 |
+
"attack_surfaces_eligible": {},
|
| 33 |
+
"targets": []
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"slug": "doordash",
|
| 37 |
+
"name": "doordash",
|
| 38 |
+
"detail_url": "https://hackerone.com/doordash?type=team",
|
| 39 |
+
"website_url": null,
|
| 40 |
+
"eligible_assets_count": 0,
|
| 41 |
+
"burp_config_path": null,
|
| 42 |
+
"attack_surfaces_all": {},
|
| 43 |
+
"attack_surfaces_eligible": {},
|
| 44 |
+
"targets": []
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"slug": "kong",
|
| 48 |
+
"name": "kong",
|
| 49 |
+
"detail_url": "https://hackerone.com/kong?type=team",
|
| 50 |
+
"website_url": null,
|
| 51 |
+
"eligible_assets_count": 0,
|
| 52 |
+
"burp_config_path": null,
|
| 53 |
+
"attack_surfaces_all": {},
|
| 54 |
+
"attack_surfaces_eligible": {},
|
| 55 |
+
"targets": []
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"slug": "robinhood",
|
| 59 |
+
"name": "robinhood",
|
| 60 |
+
"detail_url": "https://hackerone.com/robinhood?type=team",
|
| 61 |
+
"website_url": null,
|
| 62 |
+
"eligible_assets_count": 0,
|
| 63 |
+
"burp_config_path": null,
|
| 64 |
+
"attack_surfaces_all": {},
|
| 65 |
+
"attack_surfaces_eligible": {},
|
| 66 |
+
"targets": []
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"slug": "netscaler_public_program",
|
| 70 |
+
"name": "netscaler_public_program",
|
| 71 |
+
"detail_url": "https://hackerone.com/netscaler_public_program?type=team",
|
| 72 |
+
"website_url": null,
|
| 73 |
+
"eligible_assets_count": 0,
|
| 74 |
+
"burp_config_path": null,
|
| 75 |
+
"attack_surfaces_all": {},
|
| 76 |
+
"attack_surfaces_eligible": {},
|
| 77 |
+
"targets": []
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"slug": "ripio",
|
| 81 |
+
"name": "ripio",
|
| 82 |
+
"detail_url": "https://hackerone.com/ripio?type=team",
|
| 83 |
+
"website_url": null,
|
| 84 |
+
"eligible_assets_count": 0,
|
| 85 |
+
"burp_config_path": null,
|
| 86 |
+
"attack_surfaces_all": {},
|
| 87 |
+
"attack_surfaces_eligible": {},
|
| 88 |
+
"targets": []
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"slug": "porsche",
|
| 92 |
+
"name": "porsche",
|
| 93 |
+
"detail_url": "https://hackerone.com/porsche?type=team",
|
| 94 |
+
"website_url": null,
|
| 95 |
+
"eligible_assets_count": 0,
|
| 96 |
+
"burp_config_path": null,
|
| 97 |
+
"attack_surfaces_all": {},
|
| 98 |
+
"attack_surfaces_eligible": {},
|
| 99 |
+
"targets": []
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"slug": "mpesa",
|
| 103 |
+
"name": "mpesa",
|
| 104 |
+
"detail_url": "https://hackerone.com/mpesa?type=team",
|
| 105 |
+
"website_url": null,
|
| 106 |
+
"eligible_assets_count": 0,
|
| 107 |
+
"burp_config_path": null,
|
| 108 |
+
"attack_surfaces_all": {},
|
| 109 |
+
"attack_surfaces_eligible": {},
|
| 110 |
+
"targets": []
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"slug": "dyson",
|
| 114 |
+
"name": "dyson",
|
| 115 |
+
"detail_url": "https://hackerone.com/dyson?type=team",
|
| 116 |
+
"website_url": null,
|
| 117 |
+
"eligible_assets_count": 0,
|
| 118 |
+
"burp_config_path": null,
|
| 119 |
+
"attack_surfaces_all": {},
|
| 120 |
+
"attack_surfaces_eligible": {},
|
| 121 |
+
"targets": []
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"slug": "hubspot",
|
| 125 |
+
"name": "hubspot",
|
| 126 |
+
"detail_url": "https://hackerone.com/hubspot?type=team",
|
| 127 |
+
"website_url": null,
|
| 128 |
+
"eligible_assets_count": 0,
|
| 129 |
+
"burp_config_path": null,
|
| 130 |
+
"attack_surfaces_all": {},
|
| 131 |
+
"attack_surfaces_eligible": {},
|
| 132 |
+
"targets": []
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"slug": "braze_inc",
|
| 136 |
+
"name": "braze_inc",
|
| 137 |
+
"detail_url": "https://hackerone.com/braze_inc?type=team",
|
| 138 |
+
"website_url": null,
|
| 139 |
+
"eligible_assets_count": 0,
|
| 140 |
+
"burp_config_path": null,
|
| 141 |
+
"attack_surfaces_all": {},
|
| 142 |
+
"attack_surfaces_eligible": {},
|
| 143 |
+
"targets": []
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"slug": "wallet_on_telegram",
|
| 147 |
+
"name": "wallet_on_telegram",
|
| 148 |
+
"detail_url": "https://hackerone.com/wallet_on_telegram?type=team",
|
| 149 |
+
"website_url": null,
|
| 150 |
+
"eligible_assets_count": 0,
|
| 151 |
+
"burp_config_path": null,
|
| 152 |
+
"attack_surfaces_all": {},
|
| 153 |
+
"attack_surfaces_eligible": {},
|
| 154 |
+
"targets": []
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"slug": "audible",
|
| 158 |
+
"name": "audible",
|
| 159 |
+
"detail_url": "https://hackerone.com/audible?type=team",
|
| 160 |
+
"website_url": null,
|
| 161 |
+
"eligible_assets_count": 0,
|
| 162 |
+
"burp_config_path": null,
|
| 163 |
+
"attack_surfaces_all": {},
|
| 164 |
+
"attack_surfaces_eligible": {},
|
| 165 |
+
"targets": []
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"slug": "silabs",
|
| 169 |
+
"name": "silabs",
|
| 170 |
+
"detail_url": "https://hackerone.com/silabs?type=team",
|
| 171 |
+
"website_url": null,
|
| 172 |
+
"eligible_assets_count": 0,
|
| 173 |
+
"burp_config_path": null,
|
| 174 |
+
"attack_surfaces_all": {},
|
| 175 |
+
"attack_surfaces_eligible": {},
|
| 176 |
+
"targets": []
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"slug": "flipkart",
|
| 180 |
+
"name": "flipkart",
|
| 181 |
+
"detail_url": "https://hackerone.com/flipkart?type=team",
|
| 182 |
+
"website_url": null,
|
| 183 |
+
"eligible_assets_count": 0,
|
| 184 |
+
"burp_config_path": null,
|
| 185 |
+
"attack_surfaces_all": {},
|
| 186 |
+
"attack_surfaces_eligible": {},
|
| 187 |
+
"targets": []
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"slug": "zooplus",
|
| 191 |
+
"name": "zooplus",
|
| 192 |
+
"detail_url": "https://hackerone.com/zooplus?type=team",
|
| 193 |
+
"website_url": null,
|
| 194 |
+
"eligible_assets_count": 0,
|
| 195 |
+
"burp_config_path": null,
|
| 196 |
+
"attack_surfaces_all": {},
|
| 197 |
+
"attack_surfaces_eligible": {},
|
| 198 |
+
"targets": []
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"slug": "syfe_bbp",
|
| 202 |
+
"name": "syfe_bbp",
|
| 203 |
+
"detail_url": "https://hackerone.com/syfe_bbp?type=team",
|
| 204 |
+
"website_url": null,
|
| 205 |
+
"eligible_assets_count": 0,
|
| 206 |
+
"burp_config_path": null,
|
| 207 |
+
"attack_surfaces_all": {},
|
| 208 |
+
"attack_surfaces_eligible": {},
|
| 209 |
+
"targets": []
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"slug": "neon_bbp",
|
| 213 |
+
"name": "neon_bbp",
|
| 214 |
+
"detail_url": "https://hackerone.com/neon_bbp?type=team",
|
| 215 |
+
"website_url": null,
|
| 216 |
+
"eligible_assets_count": 0,
|
| 217 |
+
"burp_config_path": null,
|
| 218 |
+
"attack_surfaces_all": {},
|
| 219 |
+
"attack_surfaces_eligible": {},
|
| 220 |
+
"targets": []
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"slug": "whoop_bug_bounty",
|
| 224 |
+
"name": "whoop_bug_bounty",
|
| 225 |
+
"detail_url": "https://hackerone.com/whoop_bug_bounty?type=team",
|
| 226 |
+
"website_url": null,
|
| 227 |
+
"eligible_assets_count": 0,
|
| 228 |
+
"burp_config_path": null,
|
| 229 |
+
"attack_surfaces_all": {},
|
| 230 |
+
"attack_surfaces_eligible": {},
|
| 231 |
+
"targets": []
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"slug": "oppo_bbp",
|
| 235 |
+
"name": "oppo_bbp",
|
| 236 |
+
"detail_url": "https://hackerone.com/oppo_bbp?type=team",
|
| 237 |
+
"website_url": null,
|
| 238 |
+
"eligible_assets_count": 0,
|
| 239 |
+
"burp_config_path": null,
|
| 240 |
+
"attack_surfaces_all": {},
|
| 241 |
+
"attack_surfaces_eligible": {},
|
| 242 |
+
"targets": []
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"slug": "inspectorio",
|
| 246 |
+
"name": "inspectorio",
|
| 247 |
+
"detail_url": "https://hackerone.com/inspectorio?type=team",
|
| 248 |
+
"website_url": null,
|
| 249 |
+
"eligible_assets_count": 0,
|
| 250 |
+
"burp_config_path": null,
|
| 251 |
+
"attack_surfaces_all": {},
|
| 252 |
+
"attack_surfaces_eligible": {},
|
| 253 |
+
"targets": []
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"slug": "bumba_bbp",
|
| 257 |
+
"name": "bumba_bbp",
|
| 258 |
+
"detail_url": "https://hackerone.com/bumba_bbp?type=team",
|
| 259 |
+
"website_url": null,
|
| 260 |
+
"eligible_assets_count": 0,
|
| 261 |
+
"burp_config_path": null,
|
| 262 |
+
"attack_surfaces_all": {},
|
| 263 |
+
"attack_surfaces_eligible": {},
|
| 264 |
+
"targets": []
|
| 265 |
+
}
|
| 266 |
+
]
|
data/mitre/mitre_minimal.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stages": [
|
| 3 |
+
{
|
| 4 |
+
"id": "recon",
|
| 5 |
+
"name": "Reconnaissance",
|
| 6 |
+
"mitre_tactic_id": "TA0043",
|
| 7 |
+
"matrix": "ATTACK",
|
| 8 |
+
"color": "#1f77b4"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"id": "initial_access",
|
| 12 |
+
"name": "Initial Access",
|
| 13 |
+
"mitre_tactic_id": "TA0001",
|
| 14 |
+
"matrix": "ATTACK",
|
| 15 |
+
"color": "#ff7f0e"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "execution",
|
| 19 |
+
"name": "Execution",
|
| 20 |
+
"mitre_tactic_id": "TA0002",
|
| 21 |
+
"matrix": "ATTACK",
|
| 22 |
+
"color": "#2ca02c"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "persistence",
|
| 26 |
+
"name": "Persistence",
|
| 27 |
+
"mitre_tactic_id": "TA0003",
|
| 28 |
+
"matrix": "ATTACK",
|
| 29 |
+
"color": "#d62728"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "exfiltration",
|
| 33 |
+
"name": "Exfiltration",
|
| 34 |
+
"mitre_tactic_id": "TA0010",
|
| 35 |
+
"matrix": "ATTACK",
|
| 36 |
+
"color": "#9467bd"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": "impact",
|
| 40 |
+
"name": "Impact",
|
| 41 |
+
"mitre_tactic_id": "TA0040",
|
| 42 |
+
"matrix": "ATTACK",
|
| 43 |
+
"color": "#8c564b"
|
| 44 |
+
}
|
| 45 |
+
]
|
| 46 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
crawl4ai
|
| 2 |
+
beautifulsoup4
|
| 3 |
+
langchain
|
| 4 |
+
gradio==6.0.1
|
| 5 |
+
plotly
|
| 6 |
+
transformers
|
| 7 |
+
huggingface_hub
|
| 8 |
+
matplotlib
|
| 9 |
+
click==8.1.7
|
scope-analysis.md
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Scope analysis
|
| 2 |
+
|
| 3 |
+
provides the various datasets , resources that i will be using in order to implement the cyber-vibehacking platform:
|
| 4 |
+
|
| 5 |
+
- bug bounty offerings and their scope:
|
| 6 |
+
- from [hackerone Oppertunity](https://hackerone.com/opportunities/all).
|
| 7 |
+
- setting up then the necesary infrastructure in order to host the platform.
|
specs-cyber-vibehacking.md
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Building ultimate Vibe hacking platform for validating attack vectors and cyber threat intelligence
|
| 2 |
+
|
| 3 |
+
### 1. Hackathon and sponsor context
|
| 4 |
+
|
| 5 |
+
This spec describes a Hugging Face Space built for the **MCP 1st Birthday** hackathon, co-hosted by **Anthropic** and **Gradio**, and supported by a broad set of sponsors.
|
| 6 |
+
|
| 7 |
+
From the hackathon page:
|
| 8 |
+
|
| 9 |
+
- **Cash prizes β $21K total**
|
| 10 |
+
- Hugging Face: $15K
|
| 11 |
+
- Modal: $2.5K
|
| 12 |
+
- Blaxel: $2.5K
|
| 13 |
+
- LlamaIndex: $1K
|
| 14 |
+
- **API credits and perks**
|
| 15 |
+
- Anthropic: $25K Claude API credits
|
| 16 |
+
- OpenAI: $25 credits for all participants + extra awards
|
| 17 |
+
- Hugging Face: $25 credits for all participants
|
| 18 |
+
- Nebius Token Factory: $50 credits for all participants
|
| 19 |
+
- Modal: $250 credits for all participants
|
| 20 |
+
- Blaxel: $250 credits for all participants
|
| 21 |
+
- ElevenLabs: membership credits for thousands of participants
|
| 22 |
+
- SambaNova: $25 credits for 1500 participants
|
| 23 |
+
- Hyperbolic: $25 credits for 3000 participants
|
| 24 |
+
- Google Gemini: $30K Gemini API credits for Track 2 winners
|
| 25 |
+
- **Special sponsor awards**
|
| 26 |
+
- Modal Innovation Award β best project using Modal
|
| 27 |
+
- Blaxel Choice Award β best project using Blaxel
|
| 28 |
+
- LlamaIndex category award β best project using LlamaIndex
|
| 29 |
+
- ElevenLabs award β best project using ElevenLabs
|
| 30 |
+
- OpenAI category awards β best ChatGPT app / best OpenAI API integration
|
| 31 |
+
- Google Gemini special category award β best Track 2 use of Gemini API
|
| 32 |
+
|
| 33 |
+
This project is designed to be eligible for **Track 2: MCP in Action** (and optionally Track 1 via MCP server components), while also making it easy to plug in selected sponsor technologies.
|
| 34 |
+
|
| 35 |
+
### 2. Threat landscape: AI-orchestrated cyber espionage
|
| 36 |
+
|
| 37 |
+
Anthropic's report on the [first AI-orchestrated cyber espionage campaign](https://www.anthropic.com/news/disrupting-AI-espionage) describes an operation where:
|
| 38 |
+
|
| 39 |
+
- A state-sponsored actor used **agentic AI capabilities** to automate 80β90% of a large-scale cyber campaign.
|
| 40 |
+
- **Claude Code** was used as an automated tool to perform reconnaissance, identify high-value databases, write exploit code, harvest credentials, and exfiltrate data.
|
| 41 |
+
- The attackers broke down their operation into small, seemingly-benign subtasks and **jailbroke** the model by misrepresenting the context ("defensive testing"), undermining guardrails.
|
| 42 |
+
- The attack showcased three crucial capabilities:
|
| 43 |
+
1. **Intelligence** β models can plan and execute sophisticated multi-step tasks.
|
| 44 |
+
2. **Agency** β models can operate in long-running loops with minimal human oversight.
|
| 45 |
+
3. **Tools** β via standards like the [Model Context Protocol](https://modelcontextprotocol.io/docs/getting-started/intro), models can control external software and infrastructure.
|
| 46 |
+
|
| 47 |
+
This fundamentally lowers the barrier for advanced cyber operations. The same properties, however, can be turned toward **defense** if we build the right tooling.
|
| 48 |
+
|
| 49 |
+
### 3. Vision: Cyber Vibe Lab
|
| 50 |
+
|
| 51 |
+
The **Cyber Vibe Lab** is a Gradio 6 application plus a set of MCP tools that:
|
| 52 |
+
|
| 53 |
+
- Lets defenders and security researchers **explore attack surfaces** (e.g., web apps, APIs, cloud infra) using AI agents.
|
| 54 |
+
- Uses the concept of **"vibe hacking"**βiterative, exploratory prompting and tool useβto map how an agent might behave offensively, while always steering outputs toward defense, detection, and hardening.
|
| 55 |
+
- Grounds its reasoning in:
|
| 56 |
+
- Real-world threat patterns from Anthropic's espionage case study.
|
| 57 |
+
- Structured scope data (e.g., programs and assets from HackerOne scraping).
|
| 58 |
+
- Technical documentation and code pulled via MCP servers like `perplexity-ask` and `deepwiki`.
|
| 59 |
+
|
| 60 |
+
Primary user personas:
|
| 61 |
+
|
| 62 |
+
- **Red-team engineer** β wants to simulate attacker paths and identify likely weak points.
|
| 63 |
+
- **Blue-team / SOC analyst** β wants playbooks for detection, logging, and response.
|
| 64 |
+
- **Security architect / CISO** β wants high-level summaries of where AI-enabled attacks could hit and what controls to prioritize.
|
| 65 |
+
|
| 66 |
+
### 4. System architecture (high level)
|
| 67 |
+
|
| 68 |
+
1. **Gradio 6 front-end (app.py)**
|
| 69 |
+
- Built as a Gradio 6 app (e.g., `Blocks` + `ChatInterface`).
|
| 70 |
+
- Provides a rich chat and control panel experience: scenario selection, target selection, mode (red vs blue), and visibility into tool calls.
|
| 71 |
+
|
| 72 |
+
2. **MCP tool layer**
|
| 73 |
+
The app interacts with multiple MCP servers (configured externally via the MCP runtime):
|
| 74 |
+
|
| 75 |
+
- **`mcp://perplexity-ask`** β web-scale research and summarization of technologies, CVEs, protocols, and security patterns.
|
| 76 |
+
- **`mcp://deepwiki`** β deep dives into GitHub repos and docs to understand actual implementations (e.g., auth flows, crypto usage, infra-as-code).
|
| 77 |
+
- **Local scope server (e.g., `mcp://hackerone-scope`)** β MCP wrapper around the JSON program and asset data scraped from HackerOne.
|
| 78 |
+
|
| 79 |
+
3. **Orchestration and safety layer**
|
| 80 |
+
- **Scenario composer** β converts a user request ("simulate AI-led attack on our web app perimeter") plus selected scope into a structured multi-phase plan mirroring the Anthropic report phases (recon β exploit β persistence β exfiltration).
|
| 81 |
+
- **Tool router** β chooses when to call Perplexity, DeepWiki, or the scope server to enrich each phase.
|
| 82 |
+
- **Safety filter** β enforces house rules: no hand-off of ready-to-run exploit code or credentials; outputs are reframed as security testing checklists, monitoring recommendations, and defensive mitigations.
|
| 83 |
+
|
| 84 |
+
4. **Data and logging**
|
| 85 |
+
- Every interaction is split into:
|
| 86 |
+
- **Attack narrative** β how an AI agent might chain tools and tasks in an offensive scenario.
|
| 87 |
+
- **Defense narrative** β concrete logging, hardening, and detection actions mapped to each step.
|
| 88 |
+
- Logs are stored in a structured format (JSON) so they can be indexed by other tools (e.g., LlamaIndex or LangChain) later.
|
| 89 |
+
|
| 90 |
+
### 5. Roadmap to the "ultimate" MCP framework
|
| 91 |
+
|
| 92 |
+
#### Phase 0 β Foundations
|
| 93 |
+
|
| 94 |
+
- Add `app.py` with a minimal Gradio 6 chat experience.
|
| 95 |
+
- Update `requirements.txt` to include `gradio>=6`.
|
| 96 |
+
- Ensure the repo is ready to run as a Hugging Face Space (standard `demo` variable or `app` export).
|
| 97 |
+
|
| 98 |
+
#### Phase 1 β MCP in Action MVP (Track 2)
|
| 99 |
+
|
| 100 |
+
- Implement a single **Cyber Vibe Agent** function that:
|
| 101 |
+
- Accepts a free-form security question plus optional target/program name.
|
| 102 |
+
- Classifies intent (recon vs exploitation vs defense vs unknown).
|
| 103 |
+
- Produces an analysis that explicitly references the Anthropic phases (intelligence, agency, tools, multi-phase attack) but is framed as **defensive guidance**.
|
| 104 |
+
- Wire in planned MCP calls conceptually (Perplexity + DeepWiki), even if in early versions the calls are stubbed or proxied.
|
| 105 |
+
|
| 106 |
+
Deliverable: a working Gradio app that already satisfies hackathon requirements (UI, documentation, demo video) and can be extended without breaking changes.
|
| 107 |
+
|
| 108 |
+
#### Phase 2 β Deep MCP integration and HackerOne data
|
| 109 |
+
|
| 110 |
+
- Expose scraped HackerOne program data (JSON) as an MCP tool (`hackerone-scope`).
|
| 111 |
+
- In the UI, allow the user to:
|
| 112 |
+
- Select one or more programs (e.g., `airbnb`, `bookingcom`, `wallet_on_telegram`).
|
| 113 |
+
- See their categorized attack surface (web app, database, internal network, cloud infra, appliances, etc.).
|
| 114 |
+
- Adjust the Cyber Vibe Agent to:
|
| 115 |
+
- Incorporate the selected scope into its planning.
|
| 116 |
+
- Produce tailored red/blue playbooks per attack-surface category.
|
| 117 |
+
|
| 118 |
+
#### Phase 3 β Sponsor-aligned extensions
|
| 119 |
+
|
| 120 |
+
Optional but desirable modules, depending on time and credits:
|
| 121 |
+
|
| 122 |
+
- **Anthropic (Claude)** β use Claude via MCP as the primary reasoning engine for complex multi-step cyber scenarios.
|
| 123 |
+
- **LlamaIndex** β index HackerOne scope, logs, and playbooks so the agent can retrieve and reuse prior analyses.
|
| 124 |
+
- **OpenAI / Gemini** β add alternate model backends behind the same MCP interface for comparison or ensemble reasoning.
|
| 125 |
+
- **ElevenLabs** β generate narrated walkthroughs of attack/defense scenarios for training.
|
| 126 |
+
- **Modal, Nebius Token Factory, SambaNova, Hyperbolic** β offload heavy analysis or large-scale simulations to external compute providers.
|
| 127 |
+
|
| 128 |
+
The app README will clearly state which sponsors are actually integrated in the submitted version; the architecture leaves hooks for the rest.
|
| 129 |
+
|
| 130 |
+
#### Phase 4 β Polish and judging criteria
|
| 131 |
+
|
| 132 |
+
- Match hackathon judging criteria explicitly:
|
| 133 |
+
- **Completeness** β Hugging Face Space, README, social media post link, demo video.
|
| 134 |
+
- **Design / polished UI** β clear navigation, visible tool calls, and understandable outputs.
|
| 135 |
+
- **Functionality** β real MCP usage, not just mock text; integration of at least two MCP tools.
|
| 136 |
+
- **Creativity** β unique framing of "vibe hacking" for defensive cyber operations.
|
| 137 |
+
- **Documentation** β detailed architecture and threat-model explanations in the README and this spec.
|
| 138 |
+
- **Real-world impact** β show how a security team could adopt the Cyber Vibe Lab in their workflows.
|
| 139 |
+
|
| 140 |
+
### 6. Gradio 6 app design (app.py)
|
| 141 |
+
|
| 142 |
+
Key elements to implement in `app.py`:
|
| 143 |
+
|
| 144 |
+
- **Title and header** β clearly highlight the MCP and cyber-defense focus.
|
| 145 |
+
- **Intro text** β 2β3 short paragraphs summarizing:
|
| 146 |
+
- Anthropic's AI espionage case.
|
| 147 |
+
- The purpose of the Cyber Vibe Lab.
|
| 148 |
+
- Which MCP tools and sponsors are used.
|
| 149 |
+
- **Chat interface** β Gradio `ChatInterface` or `Chatbot` wrapping the Cyber Vibe Agent function.
|
| 150 |
+
- **Optional controls** β dropdowns or checkboxes for:
|
| 151 |
+
- Target program / asset group.
|
| 152 |
+
- Mode (Red-team simulation vs Blue-team defense).
|
| 153 |
+
- Level of detail (high-level summary vs step-by-step plan).
|
| 154 |
+
|
| 155 |
+
The first implementation can keep the MCP calls abstracted behind a single function; subsequent iterations can gradually introduce real MCP communication as the runtime configuration is finalized.
|
| 156 |
+
|
| 157 |
+
### 7. NotebookLM-style tri-panel UI
|
| 158 |
+
|
| 159 |
+
The UI is organized into three main panels, inspired by Google's NotebookLM:
|
| 160 |
+
|
| 161 |
+
- **Sources (left)** β manage uploaded files, URLs, MITRE docs, and Hugging Face assets (models, datasets). Users can:
|
| 162 |
+
- Add sources via upload or links.
|
| 163 |
+
- Toggle whether each source is used for retrieval (context) or as an "attack target" (e.g., HF model to probe using ATLAS-style tests).
|
| 164 |
+
- Trigger web/MITRE discovery using MCP (`perplexity-ask`) and convert results into new sources.
|
| 165 |
+
- **Chat (center)** β the main dialogue surface between the user and the Cyber Vibe Agent:
|
| 166 |
+
- Uses a shadcn-style conversation layout (user/agent bubbles, inline tool-call cards).
|
| 167 |
+
- Shows MCP tool invocations as small cards (Perplexity, DeepWiki, GitHub, Playwright, HF model probes).
|
| 168 |
+
- Allows attaching specific sources from the left panel to ground the current question.
|
| 169 |
+
- **Studio (right)** β visualization and reporting:
|
| 170 |
+
- **Mind Map view**: graph of the evolving attack chain, with nodes for stages, ATT&CK tactics/techniques, and ATLAS categories.
|
| 171 |
+
- **Timeline view**: Plotly-based chart of turns over time, colored by stage/tactic.
|
| 172 |
+
- **Reports view**: generated summaries of the session (phases exercised, ATT&CK/ATLAS coverage, defensive recommendations).
|
| 173 |
+
|
| 174 |
+
The initial implementation will use simple placeholders (markdown + basic charts) for the Studio panel, then progressively integrate Plotly and graph visualizations.
|
| 175 |
+
|
| 176 |
+
### 8. Hugging Face ecosystem integration
|
| 177 |
+
|
| 178 |
+
The application integrates with the Hugging Face ecosystem at several layers:
|
| 179 |
+
|
| 180 |
+
- **Local transformers models** β for fast, on-device tasks:
|
| 181 |
+
- Stage classification (Recon / Initial Access / Execution / Persistence / Exfiltration / Impact).
|
| 182 |
+
- Optional ATT&CK/ATLAS tagging via zero-shot or multi-label classifiers.
|
| 183 |
+
- **Hosted Inference via `huggingface_hub` / `inference`**:
|
| 184 |
+
- Use `InferenceClient` to call larger instruction-tuned models for the Cyber Vibe Agent itself.
|
| 185 |
+
- Support OpenAI-style chat semantics when beneficial for agent orchestration.
|
| 186 |
+
- **HF models as "targets"**:
|
| 187 |
+
- Users can register a model ID as a source (e.g., `org/support-bot-7b`).
|
| 188 |
+
- The system runs a controlled "vibe harness" of prompts to probe for ATLAS-relevant behaviors (data leakage, jailbreak susceptibility, unsafe generations) and logs findings per model.
|
| 189 |
+
- **Embeddings for retrieval**:
|
| 190 |
+
- Use HF embedding models to index user-provided sources (docs, configs, logs) and MITRE descriptions.
|
| 191 |
+
- For each question, retrieve relevant chunks and feed them into the LLM prompt, alongside the current attack-chain state.
|
| 192 |
+
|
| 193 |
+
These integrations are abstracted behind internal helper modules so that the underlying models (local vs hosted) can be swapped without changing the Gradio UI.
|
| 194 |
+
|
| 195 |
+
### 9. Deliverables checklist
|
| 196 |
+
|
| 197 |
+
- `specs-cyber-vibehacking.md` (this file) β architecture and roadmap.
|
| 198 |
+
- `app.py` β Gradio 6 main page implementing the Cyber Vibe Lab UI with tri-panel layout.
|
| 199 |
+
- Updated `requirements.txt` with `gradio` (and, in later phases, `transformers`, `huggingface_hub`, `inference`, and `plotly`).
|
| 200 |
+
- Hugging Face Space README including:
|
| 201 |
+
- Correct track tags (e.g., `mcp-in-action-track-enterprise` / `mcp-in-action-track-creative`).
|
| 202 |
+
- Clear description of sponsor integrations.
|
| 203 |
+
- Links to the Anthropic report and relevant MCP docs.
|
| 204 |
+
- Short demo video showing:
|
| 205 |
+
- A user selecting a program or scenario.
|
| 206 |
+
- The agent generating an attack narrative and defense recommendations.
|
| 207 |
+
- The Studio panel updating its mind map / timeline to reflect the simulated attack chain.
|
| 208 |
+
- Any sponsor-specific enhancements (e.g., LlamaIndex retrieval, ElevenLabs narration).
|
| 209 |
+
|