File size: 13,808 Bytes
e462aae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Dynamic Compilation Best Practices
This document explains the best practices for dynamically compiling and executing C# code at runtime, based on Laurent Kempé's article "Dynamically compile and run code using .NET Core 3.0" ([article link](https://laurentkempe.com/2019/02/18/dynamically-compile-and-run-code-using-dotNET-Core-3.0/)).
## Overview
Dynamic compilation enables scenarios such as:
- Plugin architectures
- REPL (Read-Eval-Print Loop) implementations
- Code evaluation services
- Hot-reloading of code without restarting the application
- Runtime code generation and execution
## Key Concepts
### 1. AssemblyLoadContext (Critical for .NET Core 3.0+)
**What it is**: A mechanism introduced in .NET Core that provides control over assembly loading and enables assembly unloading.
**Why it matters**:
- **Memory Management**: Without proper unloading, dynamically loaded assemblies stay in memory forever
- **Isolation**: Each context provides isolation between different versions of assemblies
- **Hot Reload**: Enables recompilation and reloading of code at runtime
- **Resource Cleanup**: Properly releases memory when assemblies are no longer needed
**Implementation**:
```csharp
public class UnloadableAssemblyLoadContext : AssemblyLoadContext
{
public UnloadableAssemblyLoadContext()
: base(isCollectible: true) // CRITICAL: isCollectible must be true
{ }
protected override Assembly? Load(AssemblyName assemblyName)
{
// Return null to use default loading behavior
// This delegates to the default context for framework assemblies
return null;
}
}
```
**Key Points**:
- **`isCollectible: true`**: This is the critical parameter that enables assembly unloading
- Must be used for any dynamically loaded assemblies that should be unloadable
- Assemblies loaded in collectible contexts can be garbage collected after `Unload()` is called
### 2. WeakReference for Tracking Unloading
**Purpose**: Verify that assemblies are actually unloaded and garbage collected.
**Implementation**:
```csharp
var context = new UnloadableAssemblyLoadContext();
WeakReference contextWeakRef = new(context, trackResurrection: true);
try
{
// Load and execute assembly
var assembly = context.LoadFromStream(assemblyStream);
// ... execute code ...
}
finally
{
// Unload the context
context.Unload();
// Verify unloading by forcing garbage collection
for (int i = 0; i < 10 && contextWeakRef.IsAlive; i++)
{
GC.Collect();
GC.WaitForPendingFinalizers();
}
// If contextWeakRef.IsAlive is still true, something is holding a reference
}
```
**Key Points**:
- **`trackResurrection: true`**: Tracks the object even if it has a finalizer
- After `Unload()`, the weak reference should become dead after garbage collection
- If the weak reference stays alive, it indicates a memory leak (something is holding a reference)
### 3. Roslyn Compilation API
**Two Approaches**:
#### A. Roslyn Scripting API (Simpler, for REPL)
```csharp
using Microsoft.CodeAnalysis.CSharp.Scripting;
using Microsoft.CodeAnalysis.Scripting;
var options = ScriptOptions.Default
.WithReferences(typeof(object).Assembly)
.WithImports("System", "System.Linq");
var result = await CSharpScript.RunAsync("1 + 1", options);
```
**Pros**:
- Very simple API
- Built-in state management between executions
- Good for REPL scenarios
**Cons**:
- Less control over compilation
- Cannot easily unload assemblies
- Not suitable when assembly isolation is needed
#### B. CSharpCompilation API (More Control)
```csharp
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
var syntaxTree = CSharpSyntaxTree.ParseText(code);
var references = new[]
{
MetadataReference.CreateFromFile(typeof(object).Assembly.Location),
MetadataReference.CreateFromFile(typeof(Console).Assembly.Location),
MetadataReference.CreateFromFile(typeof(Enumerable).Assembly.Location)
};
var compilation = CSharpCompilation.Create(
"DynamicAssembly",
syntaxTrees: new[] { syntaxTree },
references: references,
options: new CSharpCompilationOptions(
OutputKind.DynamicallyLinkedLibrary,
optimizationLevel: OptimizationLevel.Release
)
);
using var ms = new MemoryStream();
var emitResult = compilation.Emit(ms);
if (emitResult.Success)
{
ms.Seek(0, SeekOrigin.Begin);
var assembly = context.LoadFromStream(ms);
}
```
**Pros**:
- Full control over compilation process
- Can emit to memory streams for loading in custom contexts
- Better error diagnostics
- Suitable for production scenarios
**Cons**:
- More verbose
- Requires manual reference management
### 4. Reference Management
**Critical**: All assemblies and types used in the dynamic code must have their metadata references added to the compilation.
**Common References**:
```csharp
var references = new List<MetadataReference>
{
// Core runtime
MetadataReference.CreateFromFile(typeof(object).Assembly.Location),
MetadataReference.CreateFromFile(typeof(Console).Assembly.Location),
// LINQ
MetadataReference.CreateFromFile(typeof(Enumerable).Assembly.Location),
// System.Runtime (critical for .NET Core)
MetadataReference.CreateFromFile(Assembly.Load("System.Runtime").Location),
// Collections
MetadataReference.CreateFromFile(Assembly.Load("System.Collections").Location),
// For async/await
MetadataReference.CreateFromFile(typeof(Task).Assembly.Location)
};
```
**Finding Additional References**:
```csharp
// For a specific type you need
var type = typeof(SomeType);
var reference = MetadataReference.CreateFromFile(type.Assembly.Location);
// For framework assemblies
var assembly = Assembly.Load("AssemblyName");
var reference = MetadataReference.CreateFromFile(assembly.Location);
```
### 5. Entry Point Discovery
When executing compiled assemblies, you need to find the entry point:
```csharp
private static MethodInfo? FindEntryPoint(Assembly assembly)
{
// Traditional Main method
var programType = assembly.GetTypes()
.FirstOrDefault(t => t.Name == "Program");
if (programType != null)
{
var mainMethod = programType.GetMethod("Main",
BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic);
if (mainMethod != null)
return mainMethod;
}
// Top-level statements (C# 9+)
var entryPoint = assembly.GetTypes()
.SelectMany(t => t.GetMethods(
BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic))
.FirstOrDefault(m => m.Name == "<Main>$");
return entryPoint;
}
```
**Execution**:
```csharp
var entryPoint = FindEntryPoint(assembly);
var parameters = entryPoint.GetParameters().Length == 0
? null
: new object[] { Array.Empty<string>() };
var result = entryPoint.Invoke(null, parameters);
// Handle async returns
if (result is Task task)
{
await task;
}
```
### 6. Console Output Capture
**For REPL scenarios**, capture Console output:
```csharp
var outputBuilder = new StringBuilder();
var originalOut = Console.Out;
try
{
using var outputWriter = new StringWriter(outputBuilder);
Console.SetOut(outputWriter);
// Execute code
await outputWriter.FlushAsync();
var output = outputBuilder.ToString();
}
finally
{
Console.SetOut(originalOut);
}
```
## Implementation in RoslynStone
### Architecture Decision
We use **both approaches** strategically:
1. **RoslynScriptingService** (Scripting API)
- Used for REPL functionality
- State preservation between executions
- Simple expression evaluation
- Quick prototyping
2. **CompilationService + AssemblyExecutionService** (Compilation API)
- Used for file execution
- Proper assembly unloading
- Memory isolation
- Production-grade execution
### Services Created
#### CompilationService
```csharp
// Compiles C# code to in-memory assemblies
public class CompilationService
{
public CompilationResult Compile(string code, string? assemblyName = null)
{
// Uses CSharpCompilation API
// Returns MemoryStream with compiled assembly
}
}
```
#### AssemblyExecutionService
```csharp
// Executes assemblies in unloadable contexts
public class AssemblyExecutionService
{
public async Task<AssemblyExecutionResult> ExecuteFileAsync(
string filePath,
CancellationToken cancellationToken = default)
{
// 1. Compile code
// 2. Create UnloadableAssemblyLoadContext
// 3. Load assembly from stream
// 4. Find and invoke entry point
// 5. Unload context
// 6. Verify unloading with WeakReference
}
}
```
#### UnloadableAssemblyLoadContext
```csharp
// Custom context for assembly isolation
public class UnloadableAssemblyLoadContext : AssemblyLoadContext
{
public UnloadableAssemblyLoadContext()
: base(isCollectible: true) { }
}
```
## Best Practices Summary
### ✅ DO
1. **Use AssemblyLoadContext** for any dynamically loaded assemblies
2. **Set isCollectible: true** when creating the context
3. **Use WeakReference** to verify unloading
4. **Call Unload()** and force garbage collection
5. **Manage metadata references** carefully
6. **Capture and handle compilation errors** properly
7. **Find entry points** for both traditional and top-level statements
8. **Handle async return types** (Task, Task<T>)
9. **Capture console output** if needed
10. **Dispose MemoryStreams** after loading assemblies
### ❌ DON'T
1. **Don't load assemblies in the default context** if you need to unload them
2. **Don't forget to call Unload()** on the context
3. **Don't hold references** to objects from the unloaded context
4. **Don't use the Scripting API** when you need assembly unloading
5. **Don't forget required assembly references** (System.Runtime is critical)
6. **Don't emit to disk** unless necessary (use MemoryStream)
7. **Don't forget to reset Console.Out** after capturing output
8. **Don't ignore compilation diagnostics**
9. **Don't assume synchronous execution** (handle Task returns)
10. **Don't forget to flush output writers** before reading captured output
## Memory Management Pattern
```csharp
// Correct pattern for dynamic compilation and execution
var context = new UnloadableAssemblyLoadContext();
WeakReference weakRef = new(context, trackResurrection: true);
try
{
// 1. Compile
var compilation = /* ... */;
using var ms = new MemoryStream();
var result = compilation.Emit(ms);
// 2. Load
ms.Seek(0, SeekOrigin.Begin);
var assembly = context.LoadFromStream(ms);
// 3. Execute
var entryPoint = FindEntryPoint(assembly);
entryPoint.Invoke(null, parameters);
}
finally
{
// 4. Unload
context.Unload();
// 5. Verify unloading
for (int i = 0; i < 10 && weakRef.IsAlive; i++)
{
GC.Collect();
GC.WaitForPendingFinalizers();
}
if (weakRef.IsAlive)
{
// Memory leak detected - something is still holding a reference
Console.WriteLine("Warning: Assembly context was not unloaded");
}
}
```
## Security Considerations
1. **Code Execution Risk**: Dynamic compilation executes arbitrary code
- Run in sandboxed environments
- Implement code review/validation
- Use least-privilege execution
2. **Resource Limits**:
- Set execution timeouts
- Monitor memory usage
- Limit CPU usage
3. **Assembly References**:
- Only add necessary references
- Avoid loading privileged assemblies
- Validate assembly sources
## Performance Considerations
1. **First Compilation**: ~500-1000ms (includes JIT)
2. **Subsequent Compilations**: ~200-300ms
3. **Unloading**: ~50-100ms (with forced GC)
4. **Memory**: Each loaded assembly context adds ~1-5MB overhead
**Optimization Tips**:
- Cache compilation results when possible
- Reuse AssemblyLoadContext instances for similar operations
- Batch multiple compilations
- Use OptimizationLevel.Release for production
## Testing
Essential tests to include:
```csharp
[Fact]
public async Task Assembly_CanBeUnloaded()
{
WeakReference weakRef = null;
{
var context = new UnloadableAssemblyLoadContext();
weakRef = new WeakReference(context, trackResurrection: true);
// Load and execute assembly
context.Unload();
}
// Force GC
for (int i = 0; i < 10; i++)
{
GC.Collect();
GC.WaitForPendingFinalizers();
}
Assert.False(weakRef.IsAlive, "Assembly context was not unloaded");
}
```
## References
- [Laurent Kempé's Article](https://laurentkempe.com/2019/02/18/dynamically-compile-and-run-code-using-dotNET-Core-3.0/)
- [GitHub - DynamicRun Project](https://github.com/laurentkempe/DynamicRun)
- [Microsoft Docs - AssemblyLoadContext](https://learn.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext)
- [Microsoft Docs - Roslyn APIs](https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/)
- [Stack Overflow - Dynamic Compilation in .NET Core](https://stackoverflow.com/questions/71474900/dynamic-compilation-in-net-core-6)
## Conclusion
The key insight from Laurent Kempé's approach is that **AssemblyLoadContext with `isCollectible: true` is essential** for proper memory management in dynamic compilation scenarios. Without it, every dynamically loaded assembly stays in memory forever, leading to memory leaks.
Combined with proper use of:
- Roslyn's CSharpCompilation API
- WeakReference for verification
- Correct reference management
- Proper entry point discovery
This approach enables production-grade dynamic code execution with full control over memory lifecycle.
|