finetune-large-v2-03102025-exp2
This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0841
- Wer: 4.0248
- Cer: 1.7761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 116
- training_steps: 580
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|---|---|---|---|---|---|
| 0.289 | 0.9915 | 58 | 0.1063 | 5.8824 | 2.0452 |
| 0.1082 | 1.9744 | 116 | 0.0920 | 4.6440 | 1.8299 |
| 0.0568 | 2.9573 | 174 | 0.1029 | 4.3344 | 1.4532 |
| 0.0294 | 3.9402 | 232 | 0.0737 | 2.7864 | 1.2379 |
| 0.0122 | 4.9231 | 290 | 0.0966 | 4.0248 | 1.9914 |
| 0.0065 | 5.9060 | 348 | 0.0822 | 3.4056 | 1.3455 |
| 0.0041 | 6.8889 | 406 | 0.0808 | 4.3344 | 1.9914 |
| 0.0029 | 7.8718 | 464 | 0.0843 | 4.0248 | 1.7761 |
| 0.002 | 8.8547 | 522 | 0.0839 | 4.0248 | 1.7761 |
| 0.003 | 9.8376 | 580 | 0.0841 | 4.0248 | 1.7761 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 3
Model tree for Kush0610/finetune-large-v2-03102025-exp2
Base model
openai/whisper-large-v2