File size: 2,783 Bytes
1a7f06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: apache-2.0
base_model: bert-large-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-large-cased-binary-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-cased-binary-classification

This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1857
- Accuracy: 0.7548
- F1 Macro: 0.7312
- Precision Macro: 0.7580
- Recall Macro: 0.7246
- Auc: 0.7883

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:------:|
| No log        | 1.0   | 79   | 0.6805          | 0.5987   | 0.3818   | 0.7987          | 0.5039       | 0.6079 |
| No log        | 2.0   | 158  | 0.6254          | 0.6497   | 0.6490   | 0.6611          | 0.6655       | 0.7395 |
| No log        | 3.0   | 237  | 0.6803          | 0.7166   | 0.6941   | 0.7087          | 0.6900       | 0.7563 |
| No log        | 4.0   | 316  | 0.7502          | 0.7166   | 0.7106   | 0.7093          | 0.7153       | 0.7784 |
| No log        | 5.0   | 395  | 1.1857          | 0.7548   | 0.7312   | 0.7580          | 0.7246       | 0.7883 |
| No log        | 6.0   | 474  | 1.4866          | 0.7548   | 0.7312   | 0.7580          | 0.7246       | 0.7798 |
| 0.3165        | 7.0   | 553  | 1.5617          | 0.7420   | 0.7319   | 0.7322          | 0.7316       | 0.7829 |
| 0.3165        | 8.0   | 632  | 1.6626          | 0.7452   | 0.7311   | 0.7366          | 0.7280       | 0.7762 |
| 0.3165        | 9.0   | 711  | 1.7303          | 0.7611   | 0.7423   | 0.7595          | 0.7363       | 0.7768 |
| 0.3165        | 10.0  | 790  | 1.7471          | 0.7452   | 0.7294   | 0.7376          | 0.7255       | 0.7765 |


### Framework versions

- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1