Upload Unit_4_upload.py with huggingface_hub
Browse files- Unit_4_upload.py +343 -0
Unit_4_upload.py
ADDED
|
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================================================
|
| 2 |
+
# Unit 4: Upload REINFORCE CartPole Model to Hugging Face
|
| 3 |
+
# ============================================================
|
| 4 |
+
|
| 5 |
+
import gymnasium as gym
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from huggingface_hub import HfApi, create_repo
|
| 13 |
+
from torch.distributions import Categorical
|
| 14 |
+
|
| 15 |
+
# ============================================================
|
| 16 |
+
# 配置参数(修改这里)
|
| 17 |
+
# ============================================================
|
| 18 |
+
USERNAME = "ImaghT" # 替换为你的用户名
|
| 19 |
+
MODEL_NAME = "reinforce-CartPole-v1"
|
| 20 |
+
MODEL_FILE = "/home/eason/Workspace/Result_DRL/reinforce_cartpole.pth" # 绝对路径
|
| 21 |
+
ENV_ID = "CartPole-v1"
|
| 22 |
+
N_EVAL_EPISODES = 100
|
| 23 |
+
|
| 24 |
+
repo_id = f"{USERNAME}/{MODEL_NAME}"
|
| 25 |
+
|
| 26 |
+
# ============================================================
|
| 27 |
+
# 策略网络定义(与训练时相同)
|
| 28 |
+
# ============================================================
|
| 29 |
+
class Policy(nn.Module):
|
| 30 |
+
def __init__(self, s_size, a_size, h_size=128):
|
| 31 |
+
super(Policy, self).__init__()
|
| 32 |
+
self.fc1 = nn.Linear(s_size, h_size)
|
| 33 |
+
self.fc2 = nn.Linear(h_size, a_size)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
x = F.relu(self.fc1(x))
|
| 37 |
+
x = self.fc2(x)
|
| 38 |
+
return F.softmax(x, dim=1)
|
| 39 |
+
|
| 40 |
+
# ============================================================
|
| 41 |
+
# 1. 加载训练好的模型
|
| 42 |
+
# ============================================================
|
| 43 |
+
print("Loading trained model...")
|
| 44 |
+
if not os.path.exists(MODEL_FILE):
|
| 45 |
+
print(f"❌ Error: Model file '{MODEL_FILE}' not found!")
|
| 46 |
+
print("Please run the training script first to generate the model.")
|
| 47 |
+
exit(1)
|
| 48 |
+
|
| 49 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 50 |
+
checkpoint = torch.load(MODEL_FILE, map_location=device, weights_only=False)
|
| 51 |
+
|
| 52 |
+
# 重建模型
|
| 53 |
+
s_size = checkpoint['s_size']
|
| 54 |
+
a_size = checkpoint['a_size']
|
| 55 |
+
hidden_size = checkpoint['hidden_size']
|
| 56 |
+
|
| 57 |
+
policy = Policy(s_size, a_size, hidden_size).to(device)
|
| 58 |
+
policy.load_state_dict(checkpoint['policy_state_dict'])
|
| 59 |
+
policy.eval()
|
| 60 |
+
|
| 61 |
+
print(f"✅ Model loaded from {MODEL_FILE}")
|
| 62 |
+
print(f" State size: {s_size}, Action size: {a_size}")
|
| 63 |
+
print(f" Hidden size: {hidden_size}")
|
| 64 |
+
|
| 65 |
+
# ============================================================
|
| 66 |
+
# 2. 创建评估环境
|
| 67 |
+
# ============================================================
|
| 68 |
+
print("\nCreating evaluation environment...")
|
| 69 |
+
eval_env = gym.make(ENV_ID)
|
| 70 |
+
print(f"✅ Environment {ENV_ID} ready")
|
| 71 |
+
|
| 72 |
+
# ============================================================
|
| 73 |
+
# 3. 运行评估
|
| 74 |
+
# ============================================================
|
| 75 |
+
print("="*60)
|
| 76 |
+
print(f"Starting Evaluation ({N_EVAL_EPISODES} episodes)...")
|
| 77 |
+
print("="*60)
|
| 78 |
+
|
| 79 |
+
episode_rewards = []
|
| 80 |
+
episode_lengths = []
|
| 81 |
+
|
| 82 |
+
for episode in range(N_EVAL_EPISODES):
|
| 83 |
+
state, _ = eval_env.reset()
|
| 84 |
+
episode_reward = 0
|
| 85 |
+
episode_length = 0
|
| 86 |
+
done = False
|
| 87 |
+
|
| 88 |
+
while not done:
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
state_tensor = torch.from_numpy(state).float().unsqueeze(0).to(device)
|
| 91 |
+
probs = policy.forward(state_tensor)
|
| 92 |
+
m = Categorical(probs)
|
| 93 |
+
action = m.sample().item()
|
| 94 |
+
|
| 95 |
+
state, reward, terminated, truncated, _ = eval_env.step(action)
|
| 96 |
+
episode_reward += reward
|
| 97 |
+
episode_length += 1
|
| 98 |
+
done = terminated or truncated
|
| 99 |
+
|
| 100 |
+
episode_rewards.append(episode_reward)
|
| 101 |
+
episode_lengths.append(episode_length)
|
| 102 |
+
|
| 103 |
+
if (episode + 1) % 10 == 0:
|
| 104 |
+
print(f"Episode {episode + 1}/{N_EVAL_EPISODES}: "
|
| 105 |
+
f"Reward = {episode_reward:.2f}, Length = {episode_length}")
|
| 106 |
+
|
| 107 |
+
# ============================================================
|
| 108 |
+
# 4. 计算统计数据
|
| 109 |
+
# ============================================================
|
| 110 |
+
mean_reward = np.mean(episode_rewards)
|
| 111 |
+
std_reward = np.std(episode_rewards)
|
| 112 |
+
min_reward = np.min(episode_rewards)
|
| 113 |
+
max_reward = np.max(episode_rewards)
|
| 114 |
+
mean_length = np.mean(episode_lengths)
|
| 115 |
+
score = mean_reward - std_reward
|
| 116 |
+
|
| 117 |
+
print("\n" + "="*60)
|
| 118 |
+
print("Evaluation Results:")
|
| 119 |
+
print(f" Mean Reward: {mean_reward:.2f}")
|
| 120 |
+
print(f" Std Reward: {std_reward:.2f}")
|
| 121 |
+
print(f" Min Reward: {min_reward:.2f}")
|
| 122 |
+
print(f" Max Reward: {max_reward:.2f}")
|
| 123 |
+
print(f" Mean Length: {mean_length:.2f}")
|
| 124 |
+
print(f" Score (mean - std): {score:.2f}")
|
| 125 |
+
print(f" Baseline Required: 350.0")
|
| 126 |
+
if score >= 350:
|
| 127 |
+
print(f" Status: ✅ PASSED")
|
| 128 |
+
else:
|
| 129 |
+
print(f" Status: ❌ NOT PASSED (need {350 - score:.2f} more points)")
|
| 130 |
+
print("="*60 + "\n")
|
| 131 |
+
|
| 132 |
+
# ============================================================
|
| 133 |
+
# 5. 创建 README.md(完全避免f-string中的#符号)
|
| 134 |
+
# ============================================================
|
| 135 |
+
|
| 136 |
+
# 使用字符串格式化而不是f-string来避免#符号问题
|
| 137 |
+
readme_template = """---
|
| 138 |
+
library_name: reinforce
|
| 139 |
+
tags:
|
| 140 |
+
- CartPole-v1
|
| 141 |
+
- deep-reinforcement-learning
|
| 142 |
+
- reinforcement-learning
|
| 143 |
+
- policy-gradient
|
| 144 |
+
- reinforce
|
| 145 |
+
model-index:
|
| 146 |
+
- name: REINFORCE
|
| 147 |
+
results:
|
| 148 |
+
- task:
|
| 149 |
+
type: reinforcement-learning
|
| 150 |
+
name: reinforcement-learning
|
| 151 |
+
dataset:
|
| 152 |
+
name: CartPole-v1
|
| 153 |
+
type: CartPole-v1
|
| 154 |
+
metrics:
|
| 155 |
+
- type: mean_reward
|
| 156 |
+
value: {mean_reward:.2f} +/- {std_reward:.2f}
|
| 157 |
+
name: mean_reward
|
| 158 |
+
verified: false
|
| 159 |
+
---
|
| 160 |
+
|
| 161 |
+
# **REINFORCE** Agent playing **CartPole-v1**
|
| 162 |
+
|
| 163 |
+
This is a trained model of a **REINFORCE** agent playing **CartPole-v1**
|
| 164 |
+
using PyTorch and the [Deep Reinforcement Learning Course](https://huggingface.co/deep-rl-course/unit4).
|
| 165 |
+
|
| 166 |
+
## Algorithm
|
| 167 |
+
REINFORCE is a policy gradient method that:
|
| 168 |
+
- Directly optimizes the policy π(a|s)
|
| 169 |
+
- Uses Monte Carlo sampling to estimate returns
|
| 170 |
+
- Updates parameters in the direction of higher expected returns
|
| 171 |
+
- Belongs to the family of Policy Gradient methods
|
| 172 |
+
|
| 173 |
+
## Evaluation Results
|
| 174 |
+
|
| 175 |
+
| Metric | Value |
|
| 176 |
+
|--------|-------|
|
| 177 |
+
| Mean Reward | {mean_reward:.2f} |
|
| 178 |
+
| Std Reward | {std_reward:.2f} |
|
| 179 |
+
| Min Reward | {min_reward:.2f} |
|
| 180 |
+
| Max Reward | {max_reward:.2f} |
|
| 181 |
+
| Mean Episode Length | {mean_length:.2f} |
|
| 182 |
+
| Score (mean - std) | {score:.2f} |
|
| 183 |
+
| Evaluation Episodes | {N_EVAL_EPISODES} |
|
| 184 |
+
|
| 185 |
+
## Usage
|
| 186 |
+
|
| 187 |
+
```python
|
| 188 |
+
import torch
|
| 189 |
+
import torch.nn as nn
|
| 190 |
+
import torch.nn.functional as F
|
| 191 |
+
import gymnasium as gym
|
| 192 |
+
import numpy as np
|
| 193 |
+
|
| 194 |
+
class Policy(nn.Module):
|
| 195 |
+
def __init__(self, s_size, a_size, h_size=128):
|
| 196 |
+
super(Policy, self).__init__()
|
| 197 |
+
self.fc1 = nn.Linear(s_size, h_size)
|
| 198 |
+
self.fc2 = nn.Linear(h_size, a_size)
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
x = F.relu(self.fc1(x))
|
| 202 |
+
x = self.fc2(x)
|
| 203 |
+
return F.softmax(x, dim=1)
|
| 204 |
+
|
| 205 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 206 |
+
checkpoint = torch.load("reinforce_cartpole.pth", map_location=device)
|
| 207 |
+
|
| 208 |
+
policy = Policy(checkpoint['s_size'], checkpoint['a_size'], checkpoint['hidden_size'])
|
| 209 |
+
policy.load_state_dict(checkpoint['policy_state_dict'])
|
| 210 |
+
policy.eval()
|
| 211 |
+
|
| 212 |
+
env = gym.make("CartPole-v1")
|
| 213 |
+
state, _ = env.reset()
|
| 214 |
+
|
| 215 |
+
for step in range(1000):
|
| 216 |
+
state_tensor = torch.from_numpy(state).float().unsqueeze(0)
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
probs = policy(state_tensor)
|
| 219 |
+
action = torch.argmax(probs, dim=1).item()
|
| 220 |
+
|
| 221 |
+
state, reward, terminated, truncated, _ = env.step(action)
|
| 222 |
+
|
| 223 |
+
if terminated or truncated:
|
| 224 |
+
state, _ = env.reset()
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
## Training Configuration
|
| 228 |
+
|
| 229 |
+
- **Algorithm**: REINFORCE (Policy Gradient)
|
| 230 |
+
- **Policy Network**: 2-layer MLP (128 hidden units)
|
| 231 |
+
- **Optimizer**: Adam
|
| 232 |
+
- **Learning Rate**: 0.003
|
| 233 |
+
- **Discount Factor**: 0.99
|
| 234 |
+
- **Training Episodes**: 800
|
| 235 |
+
- **Device**: {device}
|
| 236 |
+
|
| 237 |
+
## Training Hyperparameters
|
| 238 |
+
- Episodes: 800
|
| 239 |
+
- Max steps per episode: 1000
|
| 240 |
+
- Learning rate: 0.01
|
| 241 |
+
- Gamma (discount factor): 0.99
|
| 242 |
+
- Hidden layer size: 128
|
| 243 |
+
- Optimizer: Adam
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
# 使用.format()方法而不是f-string
|
| 247 |
+
readme_content = readme_template.format(
|
| 248 |
+
mean_reward=mean_reward,
|
| 249 |
+
std_reward=std_reward,
|
| 250 |
+
min_reward=min_reward,
|
| 251 |
+
max_reward=max_reward,
|
| 252 |
+
mean_length=mean_length,
|
| 253 |
+
score=score,
|
| 254 |
+
N_EVAL_EPISODES=N_EVAL_EPISODES,
|
| 255 |
+
device=device
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# ============================================================
|
| 259 |
+
# 6. 准备上传文件
|
| 260 |
+
# ============================================================
|
| 261 |
+
print("Preparing files for upload...")
|
| 262 |
+
upload_folder = "./upload_temp"
|
| 263 |
+
os.makedirs(upload_folder, exist_ok=True)
|
| 264 |
+
|
| 265 |
+
# 创建README.md
|
| 266 |
+
readme_path = os.path.join(upload_folder, "README.md")
|
| 267 |
+
with open(readme_path, "w", encoding="utf-8") as f:
|
| 268 |
+
f.write(readme_content)
|
| 269 |
+
print(f"✅ Created README.md")
|
| 270 |
+
|
| 271 |
+
# 复制模型文件
|
| 272 |
+
model_dest = os.path.join(upload_folder, os.path.basename(MODEL_FILE))
|
| 273 |
+
shutil.copy(MODEL_FILE, model_dest)
|
| 274 |
+
print(f"✅ Copied {MODEL_FILE}")
|
| 275 |
+
|
| 276 |
+
# 创建配置文件
|
| 277 |
+
config_content = """{{
|
| 278 |
+
"env_id": "{ENV_ID}",
|
| 279 |
+
"algorithm": "REINFORCE",
|
| 280 |
+
"library": "reinforce",
|
| 281 |
+
"s_size": {s_size},
|
| 282 |
+
"a_size": {a_size},
|
| 283 |
+
"hidden_size": {hidden_size},
|
| 284 |
+
"mean_reward": {mean_reward:.2f},
|
| 285 |
+
"std_reward": {std_reward:.2f},
|
| 286 |
+
"evaluation_episodes": {N_EVAL_EPISODES}
|
| 287 |
+
}}""".format(
|
| 288 |
+
ENV_ID=ENV_ID,
|
| 289 |
+
s_size=s_size,
|
| 290 |
+
a_size=a_size,
|
| 291 |
+
hidden_size=hidden_size,
|
| 292 |
+
mean_reward=mean_reward,
|
| 293 |
+
std_reward=std_reward,
|
| 294 |
+
N_EVAL_EPISODES=N_EVAL_EPISODES
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
config_path = os.path.join(upload_folder, "config.json")
|
| 298 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
| 299 |
+
f.write(config_content)
|
| 300 |
+
print(f"✅ Created config.json")
|
| 301 |
+
|
| 302 |
+
# ============================================================
|
| 303 |
+
# 7. 上传到 Hugging Face
|
| 304 |
+
# ============================================================
|
| 305 |
+
print(f"\nUploading to {repo_id}...")
|
| 306 |
+
|
| 307 |
+
api = HfApi()
|
| 308 |
+
|
| 309 |
+
try:
|
| 310 |
+
create_repo(repo_id, repo_type="model", exist_ok=True)
|
| 311 |
+
print(f"✅ Repository created/verified")
|
| 312 |
+
except Exception as e:
|
| 313 |
+
print(f"⚠️ Repository warning: {e}")
|
| 314 |
+
|
| 315 |
+
try:
|
| 316 |
+
api.upload_folder(
|
| 317 |
+
folder_path=upload_folder,
|
| 318 |
+
repo_id=repo_id,
|
| 319 |
+
repo_type="model",
|
| 320 |
+
commit_message=f"REINFORCE CartPole - Mean: {mean_reward:.2f}, Std: {std_reward:.2f}, Score: {score:.2f}"
|
| 321 |
+
)
|
| 322 |
+
print(f"\n{'='*60}")
|
| 323 |
+
print("✅ Upload Successful!")
|
| 324 |
+
print(f"{'='*60}")
|
| 325 |
+
print(f"🔗 Model Page: https://huggingface.co/{repo_id}")
|
| 326 |
+
print(f"🏆 Check Progress: https://huggingface.co/spaces/ThomasSimonini/Check-my-progress-Deep-RL-Course")
|
| 327 |
+
print(f"{'='*60}\n")
|
| 328 |
+
|
| 329 |
+
print("📋 Important Information:")
|
| 330 |
+
print(f" • Environment: {ENV_ID}")
|
| 331 |
+
print(f" • Library tag: reinforce")
|
| 332 |
+
print(f" • Required score: 350.0")
|
| 333 |
+
print(f" • Your score: {score:.2f}")
|
| 334 |
+
print(f" • Status: {'✅ PASSED' if score >= 350 else '❌ FAILED'}")
|
| 335 |
+
|
| 336 |
+
except Exception as e:
|
| 337 |
+
print(f"\n❌ Upload failed: {e}")
|
| 338 |
+
print("Please check your Hugging Face token and internet connection.")
|
| 339 |
+
finally:
|
| 340 |
+
shutil.rmtree(upload_folder)
|
| 341 |
+
print("🧹 Cleaned up temporary files")
|
| 342 |
+
|
| 343 |
+
print("\n✨ Done!")
|