Update README.md
Browse filesأرض الضوء الذكاء الاصطناعي - مساعد السياحة الذكية ⸻ 🧠 وصف موسع: Land of Light AI هو مساعد سياحي متقدم مدعوم بالذكاء الاصطناعي تم تصميمه لإعادة تعريف كيفية تجربة الناس للسفر. من خلال الجمع بين معالجة اللغة الطبيعية والتعلم الآلي وتحليل البيانات في الوقت الفعلي، يقدم النظام إرشادات سفر مخصصة - من استكشاف الوجهات وتخطيط مسارات السفر إلى اكتشاف الكنوز المحلية المخفية. يمكن للمسافرين التفاعل بشكل طبيعي مع الذكاء الاصطناعي، وطرح أسئلة مثل "ما هو أفضل طعام محلي بالقرب مني؟" أو "خطط لي لرحلة ليوم واحد في الرياض"، واحصل على إجابات ذكية وسياقية مصممة خصيصا لاهتماماتهم وميزانيتهم ومزاجهم. تتكامل المنصة أيضا مع خدمات تحديد الموقع الجغرافي وقواعد البيانات الثقافية والدعم متعدد اللغات، مما يجعلها رفيقا متعدد الاستخدامات للسياح في جميع أنحاء العالم - وخاصة في المناطق الناطقة باللغة العربية. تهدف منظمة العفو الدولية إلى أن تصبح أرض الضوء أول منصة استخبارات سياحية عالمية عربية، قادرة على تعزيز التجارب السياحية من خلال الابتكار ورواية القصص والفهم الثقافي العميق. سواء كنت مسافرا أو وكالة سياحية أو مجلس إدارة سياحي - يوفر هذا النظام الأدوات لربط الناس بجمال العالم بطريقة أكثر ذكاء وإنسانية. 🌍✨ ⸻ 🌟 المميزات الرئيسية: • 🧭 AI Travel Chatbot: محادثة في الوقت الفعلي وتوصيات مصممة خصيصا لتفضيلات المستخدم. • 🗺️ منشئ خط سير الرحلة الذكي: ينشئ تلقائيا طرقا وخططا للوجهات المختارة. • 🕌 رؤى ثقافية وتاريخية: تشرح القصص والتقاليد والأحداث المحلية. • 🧠 نموذج التعلم المخصص: يتكيف مع سلوك المستخدم للحصول على اقتراحات أفضل. • 🌐 دعم متعدد اللغات: الإنجليزية والعربية واللغات الرئيسية الأخرى. • 📱 التكامل المستقبلي: واجهة برمجة التطبيقات جاهزة لتطبيقات الجوال ومواقع السياحة. ⸻ 🚀 الرؤية: لإضاءة عالم السفر من خلال قوة الذكاء الاصطناعي - ربط الثقافات، وتمكين المستكشفين، وتوجيه المسافرين نحو أرض النور الحقيقية.Genius Additions for Land of Light AI – Smart Tourism Assistant
1. 🧭 TourMind — Adaptive Personal AI
Concept:
The AI learns each traveler’s personality and preferences (adventurous, cultural, family-friendly, relaxed) and creates fully personalized itineraries.
Implementation:
• Use user embeddings (e.g., MiniLM, SentenceTransformers) to represent traveler interests.
• Store preferences in a lightweight database (SQLite, Firebase).
• Continuously update suggestions based on interactions.
⸻
2. 🗺️ Live Map Companion — Smart Interactive Maps
Concept:
An AI-powered interactive 3D map that shows routes, recommendations, and hidden gems dynamically.
Example input:
“Show me the top 3 scenic and peaceful spots in Abha.”
Implementation:
• Integrate Google Maps API or Mapbox.
• Generate route coordinates via AI model outputs (GPT or retrieval-based model).
• Highlight landmarks and points of interest interactively.
⸻
3. 🎧 Voice Tour — Multilingual Audio Guide
Concept:
The AI speaks to users in human-like voice, providing audio tours for landmarks and cultural insights in Arabic and English.
Implementation:
• Use gTTS, ElevenLabs, or Azure Text-to-Speech.
• Play audio dynamically as users explore locations.
• Combine with itinerary suggestions for a guided experience.
⸻
4. 📸 AI Vision Lens — Visual Recognition Companion
Concept:
Users point their camera at landmarks or locations, and the AI instantly provides historical, cultural, and tourist information.
Implementation:
• Use CLIP or BLIP models from Hugging Face for image understanding.
• Integrate with the AI chatbot to return contextual text/audio information.
• Optionally, overlay AR labels on images for immersive experience.
⸻
5. 💬 Talk Like a Local — Localized Language Assistant
Concept:
The AI translates common phrases and travel tips into local dialects, enhancing the traveler’s cultural immersion.
Example:
• In Jeddah: “هلا والله”
• In Salalah: “مرحبا فيكم”
Implementation:
• Maintain a small dialect dictionary.
• Use the AI to convert standard phrases into local variants dynamically.
⸻
6. 🌐 Smart Multi-Language Support
Concept:
Supports multiple languages seamlessly, including Arabic, English, French, and others — automatically detecting user language.
Implementation:
• Use Hugging Face multilingual models (mBERT, XLM-R, or MarianMT for translation).
• Detect input language and reply in the same or user-preferred language.
⸻
7. 🧠 Learning & Adaptation Engine
Concept:
The AI improves recommendations over time based on user interactions and feedback.
Implementation:
• Track user engagement with recommendations (visited locations, ratings).
• Fine-tune embeddings or retrieval datasets periodically.
• Optionally use reinforcement learning for smarter itinerary planning.
⸻
8. 📱 API Integration & Mobile Compatibility
Concept:
Make your AI usable on websites, mobile apps, or kiosks at tourist destinations.
Implementation:
• Expose the AI model via Hugging Face Inference API or a lightweight FastAPI backend.
• Connect the frontend (web or app) via REST calls.
⸻
💡 Why these features make it world-class:
• Combines AI chat, visual recognition, voice, maps, and personalization into a single system.
• Enhances the tourist experience in a fun, interactive, and culturally aware way.
• Fully deployable on Hugging Face Spaces or lightweight servers, making it accessible globally.
باختصار اريد البوت يتواصل مع المستخدمين في السوشيال ميديا على انه بشري ويدعم ويعلق ويسوق السياحة في السعودية ويكون كمرشد سياحي في السوشيال ميديا
|
@@ -1,3 +1,236 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- openai/gdpval
|
| 5 |
+
- Agent-Ark/Toucan-1.5M
|
| 6 |
+
language:
|
| 7 |
+
- aa
|
| 8 |
+
- ae
|
| 9 |
+
- ak
|
| 10 |
+
- ar
|
| 11 |
+
- be
|
| 12 |
+
- bg
|
| 13 |
+
- am
|
| 14 |
+
- az
|
| 15 |
+
- bh
|
| 16 |
+
- af
|
| 17 |
+
- ay
|
| 18 |
+
- bi
|
| 19 |
+
- bm
|
| 20 |
+
- ab
|
| 21 |
+
- an
|
| 22 |
+
- as
|
| 23 |
+
- av
|
| 24 |
+
- bn
|
| 25 |
+
- ba
|
| 26 |
+
- bo
|
| 27 |
+
- br
|
| 28 |
+
- bs
|
| 29 |
+
- ca
|
| 30 |
+
- ce
|
| 31 |
+
- co
|
| 32 |
+
- ch
|
| 33 |
+
- cu
|
| 34 |
+
metrics:
|
| 35 |
+
- bleu
|
| 36 |
+
- accuracy
|
| 37 |
+
- bertscore
|
| 38 |
+
base_model:
|
| 39 |
+
- deepseek-ai/DeepSeek-OCR
|
| 40 |
+
- PaddlePaddle/PaddleOCR-VL
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
# Model Card for Model ID
|
| 44 |
+
|
| 45 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 46 |
+
|
| 47 |
+
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
| 48 |
+
|
| 49 |
+
## Model Details
|
| 50 |
+
|
| 51 |
+
### Model Description
|
| 52 |
+
|
| 53 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
- **Developed by:** [More Information Needed]
|
| 58 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 59 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 60 |
+
- **Model type:** [More Information Needed]
|
| 61 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 62 |
+
- **License:** [More Information Needed]
|
| 63 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 64 |
+
|
| 65 |
+
### Model Sources [optional]
|
| 66 |
+
|
| 67 |
+
<!-- Provide the basic links for the model. -->
|
| 68 |
+
|
| 69 |
+
- **Repository:** [More Information Needed]
|
| 70 |
+
- **Paper [optional]:** [More Information Needed]
|
| 71 |
+
- **Demo [optional]:** [More Information Needed]
|
| 72 |
+
|
| 73 |
+
## Uses
|
| 74 |
+
|
| 75 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 76 |
+
|
| 77 |
+
### Direct Use
|
| 78 |
+
|
| 79 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 80 |
+
|
| 81 |
+
[More Information Needed]
|
| 82 |
+
|
| 83 |
+
### Downstream Use [optional]
|
| 84 |
+
|
| 85 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Out-of-Scope Use
|
| 90 |
+
|
| 91 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 92 |
+
|
| 93 |
+
[More Information Needed]
|
| 94 |
+
|
| 95 |
+
## Bias, Risks, and Limitations
|
| 96 |
+
|
| 97 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 98 |
+
|
| 99 |
+
[More Information Needed]
|
| 100 |
+
|
| 101 |
+
### Recommendations
|
| 102 |
+
|
| 103 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 104 |
+
|
| 105 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 106 |
+
|
| 107 |
+
## How to Get Started with the Model
|
| 108 |
+
|
| 109 |
+
Use the code below to get started with the model.
|
| 110 |
+
|
| 111 |
+
[More Information Needed]
|
| 112 |
+
|
| 113 |
+
## Training Details
|
| 114 |
+
|
| 115 |
+
### Training Data
|
| 116 |
+
|
| 117 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
### Training Procedure
|
| 122 |
+
|
| 123 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 124 |
+
|
| 125 |
+
#### Preprocessing [optional]
|
| 126 |
+
|
| 127 |
+
[More Information Needed]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
#### Training Hyperparameters
|
| 131 |
+
|
| 132 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 133 |
+
|
| 134 |
+
#### Speeds, Sizes, Times [optional]
|
| 135 |
+
|
| 136 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 137 |
+
|
| 138 |
+
[More Information Needed]
|
| 139 |
+
|
| 140 |
+
## Evaluation
|
| 141 |
+
|
| 142 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 143 |
+
|
| 144 |
+
### Testing Data, Factors & Metrics
|
| 145 |
+
|
| 146 |
+
#### Testing Data
|
| 147 |
+
|
| 148 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 149 |
+
|
| 150 |
+
[More Information Needed]
|
| 151 |
+
|
| 152 |
+
#### Factors
|
| 153 |
+
|
| 154 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 155 |
+
|
| 156 |
+
[More Information Needed]
|
| 157 |
+
|
| 158 |
+
#### Metrics
|
| 159 |
+
|
| 160 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Results
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Summary
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
## Model Examination [optional]
|
| 173 |
+
|
| 174 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 175 |
+
|
| 176 |
+
[More Information Needed]
|
| 177 |
+
|
| 178 |
+
## Environmental Impact
|
| 179 |
+
|
| 180 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 181 |
+
|
| 182 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 183 |
+
|
| 184 |
+
- **Hardware Type:** [More Information Needed]
|
| 185 |
+
- **Hours used:** [More Information Needed]
|
| 186 |
+
- **Cloud Provider:** [More Information Needed]
|
| 187 |
+
- **Compute Region:** [More Information Needed]
|
| 188 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 189 |
+
|
| 190 |
+
## Technical Specifications [optional]
|
| 191 |
+
|
| 192 |
+
### Model Architecture and Objective
|
| 193 |
+
|
| 194 |
+
[More Information Needed]
|
| 195 |
+
|
| 196 |
+
### Compute Infrastructure
|
| 197 |
+
|
| 198 |
+
[More Information Needed]
|
| 199 |
+
|
| 200 |
+
#### Hardware
|
| 201 |
+
|
| 202 |
+
[More Information Needed]
|
| 203 |
+
|
| 204 |
+
#### Software
|
| 205 |
+
|
| 206 |
+
[More Information Needed]
|
| 207 |
+
|
| 208 |
+
## Citation [optional]
|
| 209 |
+
|
| 210 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 211 |
+
|
| 212 |
+
**BibTeX:**
|
| 213 |
+
|
| 214 |
+
[More Information Needed]
|
| 215 |
+
|
| 216 |
+
**APA:**
|
| 217 |
+
|
| 218 |
+
[More Information Needed]
|
| 219 |
+
|
| 220 |
+
## Glossary [optional]
|
| 221 |
+
|
| 222 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 223 |
+
|
| 224 |
+
[More Information Needed]
|
| 225 |
+
|
| 226 |
+
## More Information [optional]
|
| 227 |
+
|
| 228 |
+
[More Information Needed]
|
| 229 |
+
|
| 230 |
+
## Model Card Authors [optional]
|
| 231 |
+
|
| 232 |
+
[More Information Needed]
|
| 233 |
+
|
| 234 |
+
## Model Card Contact
|
| 235 |
+
|
| 236 |
+
[More Information Needed]
|