Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- GetSoloTech/Code-Reasoning
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
base_model:
|
| 7 |
+
- GetSoloTech/GPT-OSS-Code-Reasoning-20B
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
+
tags:
|
| 10 |
+
- coding
|
| 11 |
+
- reasoning
|
| 12 |
+
- problem-solving
|
| 13 |
+
- algorithms
|
| 14 |
+
- python
|
| 15 |
+
- c++
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# GPT-OSS-Code-Reasoning-20B-GGUF
|
| 19 |
+
|
| 20 |
+
This is the GGUF quantized version of the [GPT-OSS-Code-Reasoning-20B](https://huggingface.co/GetSoloTech/GPT-OSS-Code-Reasoning-20B) model, optimized for efficient inference with reduced memory requirements.
|
| 21 |
+
|
| 22 |
+
## Overview
|
| 23 |
+
|
| 24 |
+
- **Base model**: `openai/gpt-oss-20b`
|
| 25 |
+
- **Objective**: Supervised fine-tuning for competitive programming and algorithmic reasoning
|
| 26 |
+
- **Format**: GGUF (optimized for llama.cpp and compatible inference engines)
|
| 27 |
+
|
| 28 |
+
## Model Variants
|
| 29 |
+
|
| 30 |
+
This GGUF model is available in multiple quantization levels to suit different hardware requirements:
|
| 31 |
+
|
| 32 |
+
| Quantization | Size | Memory Usage | Quality |
|
| 33 |
+
|--------------|------|--------------|---------|
|
| 34 |
+
| Q3_K_M | 12.9 GB | ~13 GB | Average |
|
| 35 |
+
| Q4_K_M | 15.8 GB | ~16 GB | Good |
|
| 36 |
+
| Q5_K_M | 16.9 GB | ~17 GB | Better |
|
| 37 |
+
| Q8_0 | 22.3 GB | ~23 GB | Best |
|
| 38 |
+
|
| 39 |
+
## Intended Use
|
| 40 |
+
|
| 41 |
+
- **Intended**: Generating Python/C++ solutions and reasoning for competitive programming tasks
|
| 42 |
+
- **Out of scope**: Safety-critical applications. May hallucinate or produce incorrect/inefficient code
|
| 43 |
+
|
| 44 |
+
## Quick Start
|
| 45 |
+
|
| 46 |
+
### Using llama.cpp
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
# Download the model
|
| 50 |
+
wget https://huggingface.co/GetSoloTech/GPT-OSS-Code-Reasoning-20B-GGUF/resolve/main/gpt-oss-code-reasoning-20b.Q4_K_M.gguf
|
| 51 |
+
|
| 52 |
+
# Run inference
|
| 53 |
+
./llama.cpp -m gpt-oss-code-reasoning-20b.Q4_K_M.gguf -n 512 --repeat_penalty 1.1
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Using Python with llama-cpp-python
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from llama_cpp import Llama
|
| 60 |
+
|
| 61 |
+
# Load the model
|
| 62 |
+
llm = Llama(
|
| 63 |
+
model_path="./gpt-oss-code-reasoning-20b.Q4_K_M.gguf",
|
| 64 |
+
n_ctx=4096,
|
| 65 |
+
n_threads=8
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Example problem
|
| 69 |
+
problem_text = """
|
| 70 |
+
You are given an array of integers nums and an integer target.
|
| 71 |
+
Return indices of the two numbers such that they add up to target.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
# Create the prompt
|
| 75 |
+
prompt = f"""<|im_start|>system
|
| 76 |
+
You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful.
|
| 77 |
+
<|im_end|>
|
| 78 |
+
<|im_start|>user
|
| 79 |
+
{problem_text}
|
| 80 |
+
<|im_end|>
|
| 81 |
+
<|im_start|>assistant
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
# Generate response
|
| 85 |
+
output = llm(
|
| 86 |
+
prompt,
|
| 87 |
+
max_tokens=768,
|
| 88 |
+
temperature=0.3,
|
| 89 |
+
top_p=0.9,
|
| 90 |
+
repeat_penalty=1.1,
|
| 91 |
+
stop=["<|im_end|>"]
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
print(output['choices'][0]['text'])
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### Using Ollama
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
# Create a Modelfile
|
| 101 |
+
cat > Modelfile << EOF
|
| 102 |
+
FROM ./gpt-oss-code-reasoning-20b.Q4_K_M.gguf
|
| 103 |
+
TEMPLATE """<|im_start|>system
|
| 104 |
+
{{ .System }}
|
| 105 |
+
<|im_end|>
|
| 106 |
+
<|im_start|>user
|
| 107 |
+
{{ .Prompt }}
|
| 108 |
+
<|im_end|>
|
| 109 |
+
<|im_start|>assistant
|
| 110 |
+
"""
|
| 111 |
+
PARAMETER temperature 0.3
|
| 112 |
+
PARAMETER top_p 0.9
|
| 113 |
+
PARAMETER repeat_penalty 1.1
|
| 114 |
+
EOF
|
| 115 |
+
|
| 116 |
+
# Create and run the model
|
| 117 |
+
ollama create code-reasoning -f Modelfile
|
| 118 |
+
ollama run code-reasoning "Solve this competitive programming problem: [your problem here]"
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## Prompt Format
|
| 122 |
+
|
| 123 |
+
This model was trained in a chat format. Recommended structure:
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
messages = [
|
| 127 |
+
{"role": "system", "content": "You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful."},
|
| 128 |
+
{"role": "user", "content": problem_text},
|
| 129 |
+
]
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
For GGUF models, use the following format:
|
| 133 |
+
|
| 134 |
+
```
|
| 135 |
+
<|im_start|>system
|
| 136 |
+
You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful.
|
| 137 |
+
<|im_end|>
|
| 138 |
+
<|im_start|>user
|
| 139 |
+
{problem_text}
|
| 140 |
+
<|im_end|>
|
| 141 |
+
<|im_start|>assistant
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
## Generation Tips
|
| 145 |
+
|
| 146 |
+
- **Reasoning style**: Lower temperature (0.2β0.5) for clearer step-by-step reasoning
|
| 147 |
+
- **Length**: Use `max_tokens` 512β1024 for full solutions; shorter for hints
|
| 148 |
+
- **Stop tokens**: The model uses `<|im_end|>` as a stop token
|
| 149 |
+
- **Memory optimization**: Choose the appropriate quantization level based on your hardware
|
| 150 |
+
|
| 151 |
+
## Hardware Requirements
|
| 152 |
+
|
| 153 |
+
| Quantization | Minimum RAM | Recommended RAM | GPU VRAM |
|
| 154 |
+
|--------------|-------------|-----------------|----------|
|
| 155 |
+
| Q3_K_M | 8 GB | 16 GB | 8 GB |
|
| 156 |
+
| Q4_K_M | 12 GB | 24 GB | 12 GB |
|
| 157 |
+
| Q5_K_M | 16 GB | 32 GB | 16 GB |
|
| 158 |
+
| Q8_0 | 24 GB | 48 GB | 24 GB |
|
| 159 |
+
|
| 160 |
+
## Performance Notes
|
| 161 |
+
|
| 162 |
+
- **Speed**: GGUF models are optimized for fast inference
|
| 163 |
+
- **Memory**: Significantly reduced memory footprint compared to the original model
|
| 164 |
+
- **Quality**: Minimal quality loss with appropriate quantization levels
|
| 165 |
+
- **Compatibility**: Works with llama.cpp, llama-cpp-python, Ollama, and other GGUF-compatible engines
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
## Acknowledgements
|
| 169 |
+
|
| 170 |
+
- Original model: [GetSoloTech/GPT-OSS-Code-Reasoning-20B](https://huggingface.co/GetSoloTech/GPT-OSS-Code-Reasoning-20B)
|
| 171 |
+
- Base model: `openai/gpt-oss-20b`
|
| 172 |
+
- Dataset: `nvidia/OpenCodeReasoning-2`
|
| 173 |
+
- Upstream benchmarks: TACO, APPS, DeepMind CodeContests, `open-r1/codeforces`
|
| 174 |
+
|