DigitalAsocial commited on
Commit
c81af54
·
verified ·
1 Parent(s): 1ecaf90

Upload 10 files

Browse files
README.md CHANGED
@@ -1,3 +1,526 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:67416
9
+ - loss:MultipleNegativesRankingLoss
10
+ widget:
11
+ - source_sentence: ', k on their diagonal and zero elsewhere.'
12
+ sentences:
13
+ - 'The sample ACF and PACF of the data for that time period in Figure 6.17
14
+
15
+
16
+ 466
17
+
18
+ TRANSFER FUNCTIONS AND INTERVENTION MODELS
19
+
20
+ 100
21
+
22
+ 80
23
+
24
+ 60
25
+
26
+ Week
27
+
28
+ Week 88
29
+
30
+ 40
31
+
32
+ 20
33
+
34
+ 0
35
+
36
+ 100,000
37
+
38
+ 160,000
39
+
40
+ 140,000
41
+
42
+ Sales
43
+
44
+ 200,000
45
+
46
+ 180,000
47
+
48
+ 220,000
49
+
50
+ 120,000
51
+
52
+ FIGURE 6.16
53
+
54
+ Time series plot of the weekly sales data.'
55
+ - 'Just as in equation 6.10, we can write
56
+
57
+ X = u1a1vT
58
+
59
+ 1 + u2a2vT
60
+
61
+ 2 + · · · + ukakvT
62
+
63
+ k
64
+
65
+ (6.29)
66
+
67
+ We can ignore the corresponding ui, vi of very small, though nonzero,
68
+
69
+ ai and can still reconstruct X without too much error.'
70
+ - '13.8
71
+
72
+ Multiple Kernel Learning
73
+
74
+ It is possible to construct new kernels by combining simpler kernels.'
75
+ - source_sentence: 'The main difference is that a node appears at most once as a neighbor
76
+ of an-
77
+
78
+ other node, whereas a word might appear more than once in the context of another
79
+ word.'
80
+ sentences:
81
+ - '3.2.6
82
+
83
+ A Decoupled View of Vector-Centric Backpropagation
84
+
85
+ In the previous discussion, two equivalent ways of computing the updates based
86
+ on Equa-
87
+
88
+ tions 3.12 and 3.18 were provided.'
89
+ - '(4.59),
90
+
91
+ we obtain
92
+
93
+ eT −(1 −𝜆)eT−1 = (yT −̂yT−1) −(1 −𝜆)(yT−1 −̂yT−2)
94
+
95
+ = yT −yT−1 −̂yT−1 + 𝜆yT−1 + (1 −𝜆)̂yT−2
96
+
97
+ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
98
+
99
+ =̂yT−1
100
+
101
+ = yT −yT−1 −̂yT−1 + ̂yT−1
102
+
103
+ = yT −yT−1.'
104
+ - 8This fact is not evident in the toy example of Figure 2.17.
105
+ - source_sentence: 'This influence is specified by the conditional probability
106
+
107
+ P(Y|X).'
108
+ sentences:
109
+ - 'Seasonality
110
+
111
+ is the component of time series behavior that repeats on a regular basis,
112
+
113
+ such as each year.'
114
+ - 'Note that one of the
115
+
116
+ classes is defined by strongly non-zero values in the first and third dimensions,
117
+ whereas the
118
+
119
+ second class is defined by strongly non-zero values in the second and fourth dimensions.'
120
+ - 'The nodes and the arcs between the nodes define the struc-
121
+
122
+ ture of the network, and the conditional probabilities are the parameters
123
+
124
+ given the structure.'
125
+ - source_sentence: '238
126
+
127
+ 9
128
+
129
+ Decision Trees
130
+
131
+ Rokach, L., and O. Maimon.'
132
+ sentences:
133
+ - '“Top-Down Induction of Decision Trees
134
+
135
+ Classifiers—A Survey.” IEEE Transactions on Systems, Man, and Cybernetics–
136
+
137
+ Part C 35:476–487.'
138
+ - 'The only feedback is at the
139
+
140
+ end of the game when we win or lose the game.'
141
+ - 'Subsequently, this computation is propagated
142
+
143
+ in the backwards direction with dynamic programming updates (similar to Equation
144
+ 3.8).'
145
+ - source_sentence: 'Therefore, one can use L1-regularization
146
+
147
+ to estimate which features are predictive to the application at hand.'
148
+ sentences:
149
+ - Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth.
150
+ - What about the connections in the hidden layers whose weights are set to 0?
151
+ - 'In cases where computational complexity is important, such
152
+
153
+ as in a production setting where thousands of models are being fit, it may not
154
+ be
155
+
156
+ worth the extra computational effort.'
157
+ pipeline_tag: sentence-similarity
158
+ library_name: sentence-transformers
159
+ metrics:
160
+ - pearson_cosine
161
+ - spearman_cosine
162
+ model-index:
163
+ - name: SentenceTransformer
164
+ results:
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: val
170
+ type: val
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: .nan
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: .nan
177
+ name: Spearman Cosine
178
  ---
179
+
180
+ # SentenceTransformer
181
+
182
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
183
+
184
+ ## Model Details
185
+
186
+ ### Model Description
187
+ - **Model Type:** Sentence Transformer
188
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
189
+ - **Maximum Sequence Length:** 384 tokens
190
+ - **Output Dimensionality:** 768 dimensions
191
+ - **Similarity Function:** Cosine Similarity
192
+ <!-- - **Training Dataset:** Unknown -->
193
+ <!-- - **Language:** Unknown -->
194
+ <!-- - **License:** Unknown -->
195
+
196
+ ### Model Sources
197
+
198
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
199
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
200
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
201
+
202
+ ### Full Model Architecture
203
+
204
+ ```
205
+ SentenceTransformer(
206
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
207
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
208
+ (2): Normalize()
209
+ )
210
+ ```
211
+
212
+ ## Usage
213
+
214
+ ### Direct Usage (Sentence Transformers)
215
+
216
+ First install the Sentence Transformers library:
217
+
218
+ ```bash
219
+ pip install -U sentence-transformers
220
+ ```
221
+
222
+ Then you can load this model and run inference.
223
+ ```python
224
+ from sentence_transformers import SentenceTransformer
225
+
226
+ # Download from the 🤗 Hub
227
+ model = SentenceTransformer("sentence_transformers_model_id")
228
+ # Run inference
229
+ sentences = [
230
+ 'Therefore, one can use L1-regularization\nto estimate which features are predictive to the application at hand.',
231
+ 'What about the connections in the hidden layers whose weights are set to 0?',
232
+ 'In cases where computational complexity is important, such\nas in a production setting where thousands of models are being fit, it may not be\nworth the extra computational effort.',
233
+ ]
234
+ embeddings = model.encode(sentences)
235
+ print(embeddings.shape)
236
+ # [3, 768]
237
+
238
+ # Get the similarity scores for the embeddings
239
+ similarities = model.similarity(embeddings, embeddings)
240
+ print(similarities)
241
+ # tensor([[ 1.0000, 0.4198, 0.2089],
242
+ # [ 0.4198, 1.0000, -0.0369],
243
+ # [ 0.2089, -0.0369, 1.0000]])
244
+ ```
245
+
246
+ <!--
247
+ ### Direct Usage (Transformers)
248
+
249
+ <details><summary>Click to see the direct usage in Transformers</summary>
250
+
251
+ </details>
252
+ -->
253
+
254
+ <!--
255
+ ### Downstream Usage (Sentence Transformers)
256
+
257
+ You can finetune this model on your own dataset.
258
+
259
+ <details><summary>Click to expand</summary>
260
+
261
+ </details>
262
+ -->
263
+
264
+ <!--
265
+ ### Out-of-Scope Use
266
+
267
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
268
+ -->
269
+
270
+ ## Evaluation
271
+
272
+ ### Metrics
273
+
274
+ #### Semantic Similarity
275
+
276
+ * Dataset: `val`
277
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
278
+
279
+ | Metric | Value |
280
+ |:--------------------|:--------|
281
+ | pearson_cosine | nan |
282
+ | **spearman_cosine** | **nan** |
283
+
284
+ <!--
285
+ ## Bias, Risks and Limitations
286
+
287
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
288
+ -->
289
+
290
+ <!--
291
+ ### Recommendations
292
+
293
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
294
+ -->
295
+
296
+ ## Training Details
297
+
298
+ ### Training Dataset
299
+
300
+ #### Unnamed Dataset
301
+
302
+ * Size: 67,416 training samples
303
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
304
+ * Approximate statistics based on the first 1000 samples:
305
+ | | sentence_0 | sentence_1 |
306
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
307
+ | type | string | string |
308
+ | details | <ul><li>min: 7 tokens</li><li>mean: 39.68 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 39.93 tokens</li><li>max: 384 tokens</li></ul> |
309
+ * Samples:
310
+ | sentence_0 | sentence_1 |
311
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
312
+ | <code>Leveraging Redundancies in Weights<br>It was shown in [94] that the vast majority of the weights in a neural network are redundant.</code> | <code>Furthermore, it is assumed that k ≪min{m1, m2}.</code> |
313
+ | <code>Aran, O., O. T. Yıldız, and E. Alpaydın.</code> | <code>“An Incremental Framework Based<br>on Cross-Validation for Estimating the Architecture of a Multilayer Percep-<br>tron.” International Journal of Pattern Recognition and Artificial Intelligence<br>23:159–190.</code> |
314
+ | <code>(a)<br>(d)<br>(e)<br>(f)<br><br>29<br>Code is life<br>input_decoder = Input(shape=(latent_dim,), name="decoder_input") <br>decoder_h = Dense(intermediate_dim, activation='relu', <br>name="decoder_h")(input_decoder)<br>x_decoded = Dense(original_dim, activation='sigmoid', <br>name="flat_decoded")(decoder_h) <br>decoder = Model(input_decoder, x_decoded, name="decoder") <br>We can now combine the encoder and the decoder into a single VAE model.</code> | <code>output_combined = decoder(encoder(x)[2]) <br>vae = Model(x, output_combined) <br>vae.summary() <br>Next, we get to the more familiar parts of machine learning: defining a loss function<br>so our autoencoder can train.</code> |
315
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
316
+ ```json
317
+ {
318
+ "scale": 20.0,
319
+ "similarity_fct": "cos_sim",
320
+ "gather_across_devices": false
321
+ }
322
+ ```
323
+
324
+ ### Training Hyperparameters
325
+ #### Non-Default Hyperparameters
326
+
327
+ - `per_device_train_batch_size`: 16
328
+ - `per_device_eval_batch_size`: 16
329
+ - `num_train_epochs`: 6
330
+ - `fp16`: True
331
+ - `multi_dataset_batch_sampler`: round_robin
332
+
333
+ #### All Hyperparameters
334
+ <details><summary>Click to expand</summary>
335
+
336
+ - `overwrite_output_dir`: False
337
+ - `do_predict`: False
338
+ - `eval_strategy`: no
339
+ - `prediction_loss_only`: True
340
+ - `per_device_train_batch_size`: 16
341
+ - `per_device_eval_batch_size`: 16
342
+ - `per_gpu_train_batch_size`: None
343
+ - `per_gpu_eval_batch_size`: None
344
+ - `gradient_accumulation_steps`: 1
345
+ - `eval_accumulation_steps`: None
346
+ - `torch_empty_cache_steps`: None
347
+ - `learning_rate`: 5e-05
348
+ - `weight_decay`: 0.0
349
+ - `adam_beta1`: 0.9
350
+ - `adam_beta2`: 0.999
351
+ - `adam_epsilon`: 1e-08
352
+ - `max_grad_norm`: 1
353
+ - `num_train_epochs`: 6
354
+ - `max_steps`: -1
355
+ - `lr_scheduler_type`: linear
356
+ - `lr_scheduler_kwargs`: {}
357
+ - `warmup_ratio`: 0.0
358
+ - `warmup_steps`: 0
359
+ - `log_level`: passive
360
+ - `log_level_replica`: warning
361
+ - `log_on_each_node`: True
362
+ - `logging_nan_inf_filter`: True
363
+ - `save_safetensors`: True
364
+ - `save_on_each_node`: False
365
+ - `save_only_model`: False
366
+ - `restore_callback_states_from_checkpoint`: False
367
+ - `no_cuda`: False
368
+ - `use_cpu`: False
369
+ - `use_mps_device`: False
370
+ - `seed`: 42
371
+ - `data_seed`: None
372
+ - `jit_mode_eval`: False
373
+ - `bf16`: False
374
+ - `fp16`: True
375
+ - `fp16_opt_level`: O1
376
+ - `half_precision_backend`: auto
377
+ - `bf16_full_eval`: False
378
+ - `fp16_full_eval`: False
379
+ - `tf32`: None
380
+ - `local_rank`: 0
381
+ - `ddp_backend`: None
382
+ - `tpu_num_cores`: None
383
+ - `tpu_metrics_debug`: False
384
+ - `debug`: []
385
+ - `dataloader_drop_last`: False
386
+ - `dataloader_num_workers`: 0
387
+ - `dataloader_prefetch_factor`: None
388
+ - `past_index`: -1
389
+ - `disable_tqdm`: False
390
+ - `remove_unused_columns`: True
391
+ - `label_names`: None
392
+ - `load_best_model_at_end`: False
393
+ - `ignore_data_skip`: False
394
+ - `fsdp`: []
395
+ - `fsdp_min_num_params`: 0
396
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
397
+ - `fsdp_transformer_layer_cls_to_wrap`: None
398
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
399
+ - `parallelism_config`: None
400
+ - `deepspeed`: None
401
+ - `label_smoothing_factor`: 0.0
402
+ - `optim`: adamw_torch
403
+ - `optim_args`: None
404
+ - `adafactor`: False
405
+ - `group_by_length`: False
406
+ - `length_column_name`: length
407
+ - `project`: huggingface
408
+ - `trackio_space_id`: trackio
409
+ - `ddp_find_unused_parameters`: None
410
+ - `ddp_bucket_cap_mb`: None
411
+ - `ddp_broadcast_buffers`: False
412
+ - `dataloader_pin_memory`: True
413
+ - `dataloader_persistent_workers`: False
414
+ - `skip_memory_metrics`: True
415
+ - `use_legacy_prediction_loop`: False
416
+ - `push_to_hub`: False
417
+ - `resume_from_checkpoint`: None
418
+ - `hub_model_id`: None
419
+ - `hub_strategy`: every_save
420
+ - `hub_private_repo`: None
421
+ - `hub_always_push`: False
422
+ - `hub_revision`: None
423
+ - `gradient_checkpointing`: False
424
+ - `gradient_checkpointing_kwargs`: None
425
+ - `include_inputs_for_metrics`: False
426
+ - `include_for_metrics`: []
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `include_tokens_per_second`: False
441
+ - `include_num_input_tokens_seen`: no
442
+ - `neftune_noise_alpha`: None
443
+ - `optim_target_modules`: None
444
+ - `batch_eval_metrics`: False
445
+ - `eval_on_start`: False
446
+ - `use_liger_kernel`: False
447
+ - `liger_kernel_config`: None
448
+ - `eval_use_gather_object`: False
449
+ - `average_tokens_across_devices`: True
450
+ - `prompts`: None
451
+ - `batch_sampler`: batch_sampler
452
+ - `multi_dataset_batch_sampler`: round_robin
453
+ - `router_mapping`: {}
454
+ - `learning_rate_mapping`: {}
455
+
456
+ </details>
457
+
458
+ ### Training Logs
459
+ | Epoch | Step | Training Loss | val_spearman_cosine |
460
+ |:------:|:----:|:-------------:|:-------------------:|
461
+ | 0.1187 | 500 | 1.5671 | - |
462
+ | 0.2373 | 1000 | 1.2804 | - |
463
+ | 0.3560 | 1500 | 1.1256 | - |
464
+ | 0.4746 | 2000 | 0.9789 | - |
465
+ | 0.5933 | 2500 | 0.8839 | - |
466
+ | 0.7119 | 3000 | 0.7748 | - |
467
+ | 0.8306 | 3500 | 0.73 | - |
468
+ | 0.9492 | 4000 | 0.698 | - |
469
+ | 1.0 | 4214 | - | nan |
470
+
471
+
472
+ ### Framework Versions
473
+ - Python: 3.11.7
474
+ - Sentence Transformers: 5.1.1
475
+ - Transformers: 4.57.0
476
+ - PyTorch: 2.5.1+cu121
477
+ - Accelerate: 1.12.0
478
+ - Datasets: 4.4.1
479
+ - Tokenizers: 0.22.1
480
+
481
+ ## Citation
482
+
483
+ ### BibTeX
484
+
485
+ #### Sentence Transformers
486
+ ```bibtex
487
+ @inproceedings{reimers-2019-sentence-bert,
488
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
489
+ author = "Reimers, Nils and Gurevych, Iryna",
490
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
491
+ month = "11",
492
+ year = "2019",
493
+ publisher = "Association for Computational Linguistics",
494
+ url = "https://arxiv.org/abs/1908.10084",
495
+ }
496
+ ```
497
+
498
+ #### MultipleNegativesRankingLoss
499
+ ```bibtex
500
+ @misc{henderson2017efficient,
501
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
502
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
503
+ year={2017},
504
+ eprint={1705.00652},
505
+ archivePrefix={arXiv},
506
+ primaryClass={cs.CL}
507
+ }
508
+ ```
509
+
510
+ <!--
511
+ ## Glossary
512
+
513
+ *Clearly define terms in order to be accessible across audiences.*
514
+ -->
515
+
516
+ <!--
517
+ ## Model Card Authors
518
+
519
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
520
+ -->
521
+
522
+ <!--
523
+ ## Model Card Contact
524
+
525
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
526
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "dtype": "float32",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "transformers_version": "4.57.0",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.57.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e5596b6e890844589833e7fc68156a582994e64d16f1d597d56890481e7b651
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff