SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'In doing this, there are three decisions we must make:\n\n1.',
    'g(•) defines the hypothesis class H , and a particular value of θ instantiates one hypothesis h ∈ H .',
    'Although replacing traces (Section 7.8) are known to have advantages in tabular methods, replacing traces do not directly extend to the use of function approximation.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3814, 0.1328],
#         [0.3814, 1.0000, 0.1478],
#         [0.1328, 0.1478, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine nan
spearman_cosine nan

Training Details

Training Dataset

Training Data

The model was fine-tuned using 17 reference books in Data Science and Machine Learning, including: All source books were preprocessed using GROBID, an open-source tool for extracting and structuring text from PDF documents.
The raw PDF files were converted into structured text, segmented into sentences, and cleaned before being used for training.
This ensured consistent formatting and reliable sentence boundaries across the dataset.

  1. Aßenmacher, Matthias. Multimodal Deep Learning. Self-published, 2023.
  2. Bertsekas, Dimitri P. A Course in Reinforcement Learning. Arizona State University.
  3. Boykis, Vicki. What are Embeddings. Self-published, 2023.
  4. Bruce, Peter, and Andrew Bruce. Practical Statistics for Data Scientists: 50 Essential Concepts. O’Reilly Media, 2017.
  5. Daumé III, Hal. A Course in Machine Learning. Self-published.
  6. Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning. Cambridge University Press, 2020.
  7. Devlin, Hannah, Guo Kunin, Xiang Tian. Seeing Theory. Self-published.
  8. Gutmann, Michael U. Pen & Paper: Exercises in Machine Learning. Self-published.
  9. Jung, Alexander. Machine Learning: The Basics. Springer, 2022.
  10. Langr, Jakub, and Vladimir Bok. Deep Learning with Generative Adversarial Networks. Manning Publications, 2019.
  11. MacKay, David J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
  12. Montgomery, Douglas C., Cheryl L. Jennings, and Murat Kulahci. Introduction to Time Series Analysis and Forecasting. 2nd Edition, Wiley, 2015.
  13. Nilsson, Nils J. Introduction to Machine Learning: An Early Draft of a Proposed Textbook. Stanford University, 1996.
  14. Prince, Simon J.D. Understanding Deep Learning. Draft Edition, 2024.
  15. Shashua, Amnon. Introduction to Machine Learning. The Hebrew University of Jerusalem, 2008.
  16. Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. 2nd Edition, MIT Press, 2018.
  17. Alpaydin, Ethem. Introduction to Machine Learning. 3rd Edition, MIT Press, 2014.

⚠️ Note: Due to copyright restrictions, the full text of these books is not included in this repository. Only the fine-tuned model weights are shared.

Unnamed Dataset

  • Size: 167,112 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 7 tokens
    • mean: 31.74 tokens
    • max: 384 tokens
    • min: 8 tokens
    • mean: 33.03 tokens
    • max: 384 tokens
  • Samples:
    sentence_0 sentence_1
    The weights w are not given but they can be estimated using the training set of X which we can divide as [X, r]. As we see in equation 14.14, what we are effectively doing is estimating the posterior p(w|X, r) and then integrating over it.
    These methodologies are now mature and provide † A common description is that "the machine learns sequentially how to make decisions that maximize a reward signal, based on the feedback received from the environment." At the same time, RL and machine learning have ushered opportunities for the application of DP techniques in new domains, such as machine translation, image recognition, knowledge representation, database organization, large language models, and automated planning, where they can have a significant practical impact.
    Using Lagrange multipliers (Section 7.2), we will derive the dual optimization problem of the SVM in Section 12.3. We subtract the value of ξ n from the margin, constraining ξ n to be non-negative.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 6
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss val_spearman_cosine
0.0479 500 1.5242 -
0.0957 1000 1.3208 -
0.1436 1500 1.2051 -
0.1915 2000 1.1532 -
0.2393 2500 1.0887 -
0.2872 3000 1.0238 -
0.3351 3500 0.9987 -
0.3830 4000 0.9498 -
0.4308 4500 0.9354 -
0.4787 5000 0.887 -
0.5266 5500 0.8547 -
0.5744 6000 0.8418 -
0.6223 6500 0.7828 -
0.6702 7000 0.7804 -
0.7180 7500 0.7495 -
0.7659 8000 0.7238 -
0.8138 8500 0.6807 -
0.8617 9000 0.6566 -
0.9095 9500 0.6528 -
0.9574 10000 0.6258 -
1.0 10445 - nan

Framework Versions

  • Python: 3.11.7
  • Sentence Transformers: 5.1.1
  • Transformers: 4.57.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.10.1
  • Datasets: 4.2.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

If you use this model, please cite:

@misc{aghakhani2025synergsticrag,
  author       = {Danial Aghakhani Zadeh},
  title        = {Fine-tuned all-mpnet-base-v2 for Data Science RAG},
  year         = {2025},
  publisher    = {Hugging Face},
  howpublished = {\url{https://huggingface.co/DigitalAsocial/all-mpnet-base-v2-ds-rag-17g}}
}

Contact

For questions, feedback, or collaboration requests regarding this dataset/model, please contact:

Downloads last month
14
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DigitalAsocial/all-mpnet-base-v2-ds-rag-17g

Finetuned
(328)
this model

Dataset used to train DigitalAsocial/all-mpnet-base-v2-ds-rag-17g

Evaluation results