Trouter-Library commited on
Commit
e7778df
·
verified ·
1 Parent(s): 439f0fa

Create modeling_helion_osc.py

Browse files
Files changed (1) hide show
  1. modeling_helion_osc.py +572 -0
modeling_helion_osc.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helion-OSC Model Architecture
3
+ PyTorch implementation of the Helion-OSC transformer with MoE
4
+ """
5
+
6
+ import math
7
+ from typing import Optional, Tuple, List
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from transformers import PreTrainedModel, PretrainedConfig
12
+ from transformers.modeling_outputs import CausalLMOutputWithPast
13
+
14
+
15
+ class HelionOSCConfig(PretrainedConfig):
16
+ """Configuration class for Helion-OSC model"""
17
+
18
+ model_type = "helion-osc"
19
+
20
+ def __init__(
21
+ self,
22
+ vocab_size=128256,
23
+ hidden_size=8192,
24
+ intermediate_size=28672,
25
+ num_hidden_layers=80,
26
+ num_attention_heads=64,
27
+ num_key_value_heads=8,
28
+ hidden_act="swiglu",
29
+ max_position_embeddings=262144,
30
+ initializer_range=0.02,
31
+ rms_norm_eps=1e-5,
32
+ use_cache=True,
33
+ pad_token_id=0,
34
+ bos_token_id=1,
35
+ eos_token_id=2,
36
+ tie_word_embeddings=False,
37
+ rope_theta=10000000.0,
38
+ rope_scaling=None,
39
+ attention_bias=False,
40
+ attention_dropout=0.0,
41
+ # MoE parameters
42
+ num_experts=160,
43
+ num_experts_per_tok=6,
44
+ num_shared_experts=2,
45
+ moe_intermediate_size=4096,
46
+ shared_expert_intermediate_size=14336,
47
+ **kwargs
48
+ ):
49
+ self.vocab_size = vocab_size
50
+ self.hidden_size = hidden_size
51
+ self.intermediate_size = intermediate_size
52
+ self.num_hidden_layers = num_hidden_layers
53
+ self.num_attention_heads = num_attention_heads
54
+ self.num_key_value_heads = num_key_value_heads
55
+ self.hidden_act = hidden_act
56
+ self.max_position_embeddings = max_position_embeddings
57
+ self.initializer_range = initializer_range
58
+ self.rms_norm_eps = rms_norm_eps
59
+ self.use_cache = use_cache
60
+ self.rope_theta = rope_theta
61
+ self.rope_scaling = rope_scaling
62
+ self.attention_bias = attention_bias
63
+ self.attention_dropout = attention_dropout
64
+
65
+ # MoE
66
+ self.num_experts = num_experts
67
+ self.num_experts_per_tok = num_experts_per_tok
68
+ self.num_shared_experts = num_shared_experts
69
+ self.moe_intermediate_size = moe_intermediate_size
70
+ self.shared_expert_intermediate_size = shared_expert_intermediate_size
71
+
72
+ super().__init__(
73
+ pad_token_id=pad_token_id,
74
+ bos_token_id=bos_token_id,
75
+ eos_token_id=eos_token_id,
76
+ tie_word_embeddings=tie_word_embeddings,
77
+ **kwargs
78
+ )
79
+
80
+
81
+ class HelionOSCRMSNorm(nn.Module):
82
+ """RMS Normalization"""
83
+
84
+ def __init__(self, hidden_size, eps=1e-5):
85
+ super().__init__()
86
+ self.weight = nn.Parameter(torch.ones(hidden_size))
87
+ self.variance_epsilon = eps
88
+
89
+ def forward(self, hidden_states):
90
+ input_dtype = hidden_states.dtype
91
+ hidden_states = hidden_states.to(torch.float32)
92
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
93
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
94
+ return self.weight * hidden_states.to(input_dtype)
95
+
96
+
97
+ class HelionOSCRotaryEmbedding(nn.Module):
98
+ """Rotary Position Embedding (RoPE)"""
99
+
100
+ def __init__(self, dim, max_position_embeddings=262144, base=10000000.0):
101
+ super().__init__()
102
+ self.dim = dim
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.base = base
105
+
106
+ # Compute frequency tensor
107
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
108
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
109
+
110
+ def forward(self, x, seq_len=None):
111
+ if seq_len is None:
112
+ seq_len = x.shape[-2]
113
+
114
+ t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
115
+ freqs = torch.outer(t, self.inv_freq)
116
+ emb = torch.cat((freqs, freqs), dim=-1)
117
+
118
+ return emb.cos().to(x.dtype), emb.sin().to(x.dtype)
119
+
120
+
121
+ def rotate_half(x):
122
+ """Rotates half the hidden dims of the input."""
123
+ x1 = x[..., : x.shape[-1] // 2]
124
+ x2 = x[..., x.shape[-1] // 2 :]
125
+ return torch.cat((-x2, x1), dim=-1)
126
+
127
+
128
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
129
+ """Apply rotary position embedding"""
130
+ if position_ids is None:
131
+ cos = cos.unsqueeze(0).unsqueeze(0)
132
+ sin = sin.unsqueeze(0).unsqueeze(0)
133
+ else:
134
+ cos = cos[position_ids].unsqueeze(1)
135
+ sin = sin[position_ids].unsqueeze(1)
136
+
137
+ q_embed = (q * cos) + (rotate_half(q) * sin)
138
+ k_embed = (k * cos) + (rotate_half(k) * sin)
139
+ return q_embed, k_embed
140
+
141
+
142
+ class HelionOSCAttention(nn.Module):
143
+ """Multi-head attention with GQA"""
144
+
145
+ def __init__(self, config: HelionOSCConfig, layer_idx: Optional[int] = None):
146
+ super().__init__()
147
+ self.config = config
148
+ self.layer_idx = layer_idx
149
+
150
+ self.hidden_size = config.hidden_size
151
+ self.num_heads = config.num_attention_heads
152
+ self.head_dim = self.hidden_size // self.num_heads
153
+ self.num_key_value_heads = config.num_key_value_heads
154
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
155
+ self.max_position_embeddings = config.max_position_embeddings
156
+ self.rope_theta = config.rope_theta
157
+
158
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
159
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
160
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
161
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
162
+
163
+ self.rotary_emb = HelionOSCRotaryEmbedding(
164
+ self.head_dim,
165
+ max_position_embeddings=self.max_position_embeddings,
166
+ base=self.rope_theta,
167
+ )
168
+
169
+ def forward(
170
+ self,
171
+ hidden_states: torch.Tensor,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ position_ids: Optional[torch.LongTensor] = None,
174
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
175
+ output_attentions: bool = False,
176
+ use_cache: bool = False,
177
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
178
+
179
+ bsz, q_len, _ = hidden_states.size()
180
+
181
+ query_states = self.q_proj(hidden_states)
182
+ key_states = self.k_proj(hidden_states)
183
+ value_states = self.v_proj(hidden_states)
184
+
185
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
186
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
187
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
188
+
189
+ kv_seq_len = key_states.shape[-2]
190
+ if past_key_value is not None:
191
+ kv_seq_len += past_key_value[0].shape[-2]
192
+
193
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
194
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
195
+
196
+ if past_key_value is not None:
197
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
198
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
199
+
200
+ past_key_value = (key_states, value_states) if use_cache else None
201
+
202
+ # Repeat k/v for GQA
203
+ key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
204
+ value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
205
+
206
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
207
+
208
+ if attention_mask is not None:
209
+ attn_weights = attn_weights + attention_mask
210
+
211
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
212
+ attn_weights = nn.functional.dropout(attn_weights, p=self.config.attention_dropout, training=self.training)
213
+
214
+ attn_output = torch.matmul(attn_weights, value_states)
215
+ attn_output = attn_output.transpose(1, 2).contiguous()
216
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
217
+ attn_output = self.o_proj(attn_output)
218
+
219
+ return attn_output, attn_weights if output_attentions else None, past_key_value
220
+
221
+
222
+ class HelionOSCMLP(nn.Module):
223
+ """Standard MLP (for shared experts or non-MoE layers)"""
224
+
225
+ def __init__(self, config: HelionOSCConfig, intermediate_size: Optional[int] = None):
226
+ super().__init__()
227
+ self.config = config
228
+ self.hidden_size = config.hidden_size
229
+ self.intermediate_size = intermediate_size or config.intermediate_size
230
+
231
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
232
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
233
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
234
+
235
+ def forward(self, x):
236
+ return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
237
+
238
+
239
+ class HelionOSCMoE(nn.Module):
240
+ """Mixture of Experts layer"""
241
+
242
+ def __init__(self, config: HelionOSCConfig):
243
+ super().__init__()
244
+ self.config = config
245
+ self.num_experts = config.num_experts
246
+ self.top_k = config.num_experts_per_tok
247
+ self.hidden_size = config.hidden_size
248
+
249
+ # Router
250
+ self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
251
+
252
+ # Experts
253
+ self.experts = nn.ModuleList([
254
+ HelionOSCMLP(config, intermediate_size=config.moe_intermediate_size)
255
+ for _ in range(config.num_experts)
256
+ ])
257
+
258
+ # Shared experts
259
+ if config.num_shared_experts > 0:
260
+ self.shared_experts = HelionOSCMLP(
261
+ config,
262
+ intermediate_size=config.shared_expert_intermediate_size
263
+ )
264
+ else:
265
+ self.shared_experts = None
266
+
267
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
268
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
269
+ hidden_states = hidden_states.view(-1, hidden_dim)
270
+
271
+ # Router logits
272
+ router_logits = self.gate(hidden_states)
273
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
274
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
275
+ routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
276
+
277
+ # Expert computation
278
+ final_hidden_states = torch.zeros(
279
+ (batch_size * sequence_length, hidden_dim),
280
+ dtype=hidden_states.dtype,
281
+ device=hidden_states.device
282
+ )
283
+
284
+ # Process each expert
285
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
286
+
287
+ for expert_idx in range(self.num_experts):
288
+ expert_layer = self.experts[expert_idx]
289
+ idx, top_x = torch.where(expert_mask[expert_idx])
290
+
291
+ if top_x.shape[0] == 0:
292
+ continue
293
+
294
+ top_x_list = top_x.tolist()
295
+ idx_list = idx.tolist()
296
+
297
+ current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
298
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
299
+
300
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
301
+
302
+ # Add shared expert output
303
+ if self.shared_experts is not None:
304
+ final_hidden_states = final_hidden_states + self.shared_experts(hidden_states)
305
+
306
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
307
+ return final_hidden_states
308
+
309
+
310
+ class HelionOSCDecoderLayer(nn.Module):
311
+ """Single transformer decoder layer"""
312
+
313
+ def __init__(self, config: HelionOSCConfig, layer_idx: int):
314
+ super().__init__()
315
+ self.hidden_size = config.hidden_size
316
+ self.self_attn = HelionOSCAttention(config, layer_idx)
317
+
318
+ # Use MoE for most layers
319
+ self.mlp = HelionOSCMoE(config)
320
+
321
+ self.input_layernorm = HelionOSCRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
322
+ self.post_attention_layernorm = HelionOSCRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
323
+
324
+ def forward(
325
+ self,
326
+ hidden_states: torch.Tensor,
327
+ attention_mask: Optional[torch.Tensor] = None,
328
+ position_ids: Optional[torch.LongTensor] = None,
329
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
330
+ output_attentions: Optional[bool] = False,
331
+ use_cache: Optional[bool] = False,
332
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
333
+
334
+ residual = hidden_states
335
+ hidden_states = self.input_layernorm(hidden_states)
336
+
337
+ # Self Attention
338
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
339
+ hidden_states=hidden_states,
340
+ attention_mask=attention_mask,
341
+ position_ids=position_ids,
342
+ past_key_value=past_key_value,
343
+ output_attentions=output_attentions,
344
+ use_cache=use_cache,
345
+ )
346
+ hidden_states = residual + hidden_states
347
+
348
+ # MLP
349
+ residual = hidden_states
350
+ hidden_states = self.post_attention_layernorm(hidden_states)
351
+ hidden_states = self.mlp(hidden_states)
352
+ hidden_states = residual + hidden_states
353
+
354
+ outputs = (hidden_states,)
355
+
356
+ if output_attentions:
357
+ outputs += (self_attn_weights,)
358
+
359
+ if use_cache:
360
+ outputs += (present_key_value,)
361
+
362
+ return outputs
363
+
364
+
365
+ class HelionOSCPreTrainedModel(PreTrainedModel):
366
+ """Pretrained model base class"""
367
+
368
+ config_class = HelionOSCConfig
369
+ base_model_prefix = "model"
370
+ supports_gradient_checkpointing = True
371
+ _no_split_modules = ["HelionOSCDecoderLayer"]
372
+
373
+ def _init_weights(self, module):
374
+ std = self.config.initializer_range
375
+ if isinstance(module, nn.Linear):
376
+ module.weight.data.normal_(mean=0.0, std=std)
377
+ if module.bias is not None:
378
+ module.bias.data.zero_()
379
+ elif isinstance(module, nn.Embedding):
380
+ module.weight.data.normal_(mean=0.0, std=std)
381
+ if module.padding_idx is not None:
382
+ module.weight.data[module.padding_idx].zero_()
383
+
384
+
385
+ class HelionOSCModel(HelionOSCPreTrainedModel):
386
+ """Helion-OSC transformer model"""
387
+
388
+ def __init__(self, config: HelionOSCConfig):
389
+ super().__init__(config)
390
+ self.padding_idx = config.pad_token_id
391
+ self.vocab_size = config.vocab_size
392
+
393
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
394
+ self.layers = nn.ModuleList([
395
+ HelionOSCDecoderLayer(config, layer_idx)
396
+ for layer_idx in range(config.num_hidden_layers)
397
+ ])
398
+ self.norm = HelionOSCRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
399
+
400
+ self.gradient_checkpointing = False
401
+ self.post_init()
402
+
403
+ def forward(
404
+ self,
405
+ input_ids: torch.LongTensor = None,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
409
+ inputs_embeds: Optional[torch.FloatTensor] = None,
410
+ use_cache: Optional[bool] = None,
411
+ output_attentions: Optional[bool] = None,
412
+ output_hidden_states: Optional[bool] = None,
413
+ return_dict: Optional[bool] = None,
414
+ ):
415
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
416
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
417
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
418
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
419
+
420
+ if input_ids is not None and inputs_embeds is not None:
421
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
422
+ elif input_ids is not None:
423
+ batch_size, seq_length = input_ids.shape[:2]
424
+ elif inputs_embeds is not None:
425
+ batch_size, seq_length = inputs_embeds.shape[:2]
426
+ else:
427
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
428
+
429
+ if position_ids is None:
430
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
431
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
432
+ position_ids = position_ids.unsqueeze(0)
433
+
434
+ if inputs_embeds is None:
435
+ inputs_embeds = self.embed_tokens(input_ids)
436
+
437
+ hidden_states = inputs_embeds
438
+
439
+ # Decoder layers
440
+ all_hidden_states = () if output_hidden_states else None
441
+ all_self_attns = () if output_attentions else None
442
+ next_decoder_cache = () if use_cache else None
443
+
444
+ for idx, decoder_layer in enumerate(self.layers):
445
+ if output_hidden_states:
446
+ all_hidden_states += (hidden_states,)
447
+
448
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
449
+
450
+ layer_outputs = decoder_layer(
451
+ hidden_states,
452
+ attention_mask=attention_mask,
453
+ position_ids=position_ids,
454
+ past_key_value=past_key_value,
455
+ output_attentions=output_attentions,
456
+ use_cache=use_cache,
457
+ )
458
+
459
+ hidden_states = layer_outputs[0]
460
+
461
+ if use_cache:
462
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
463
+
464
+ if output_attentions:
465
+ all_self_attns += (layer_outputs[1],)
466
+
467
+ hidden_states = self.norm(hidden_states)
468
+
469
+ if output_hidden_states:
470
+ all_hidden_states += (hidden_states,)
471
+
472
+ return tuple(v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attns] if v is not None)
473
+
474
+
475
+ class HelionOSCForCausalLM(HelionOSCPreTrainedModel):
476
+ """Helion-OSC model with language modeling head"""
477
+
478
+ def __init__(self, config):
479
+ super().__init__(config)
480
+ self.model = HelionOSCModel(config)
481
+ self.vocab_size = config.vocab_size
482
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
483
+
484
+ self.post_init()
485
+
486
+ def get_input_embeddings(self):
487
+ return self.model.embed_tokens
488
+
489
+ def set_input_embeddings(self, value):
490
+ self.model.embed_tokens = value
491
+
492
+ def get_output_embeddings(self):
493
+ return self.lm_head
494
+
495
+ def set_output_embeddings(self, new_embeddings):
496
+ self.lm_head = new_embeddings
497
+
498
+ def forward(
499
+ self,
500
+ input_ids: torch.LongTensor = None,
501
+ attention_mask: Optional[torch.Tensor] = None,
502
+ position_ids: Optional[torch.LongTensor] = None,
503
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
504
+ inputs_embeds: Optional[torch.FloatTensor] = None,
505
+ labels: Optional[torch.LongTensor] = None,
506
+ use_cache: Optional[bool] = None,
507
+ output_attentions: Optional[bool] = None,
508
+ output_hidden_states: Optional[bool] = None,
509
+ return_dict: Optional[bool] = None,
510
+ ):
511
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
512
+
513
+ outputs = self.model(
514
+ input_ids=input_ids,
515
+ attention_mask=attention_mask,
516
+ position_ids=position_ids,
517
+ past_key_values=past_key_values,
518
+ inputs_embeds=inputs_embeds,
519
+ use_cache=use_cache,
520
+ output_attentions=output_attentions,
521
+ output_hidden_states=output_hidden_states,
522
+ return_dict=return_dict,
523
+ )
524
+
525
+ hidden_states = outputs[0]
526
+ logits = self.lm_head(hidden_states)
527
+
528
+ loss = None
529
+ if labels is not None:
530
+ shift_logits = logits[..., :-1, :].contiguous()
531
+ shift_labels = labels[..., 1:].contiguous()
532
+ loss_fct = nn.CrossEntropyLoss()
533
+ loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
534
+
535
+ if not return_dict:
536
+ output = (logits,) + outputs[1:]
537
+ return (loss,) + output if loss is not None else output
538
+
539
+ return CausalLMOutputWithPast(
540
+ loss=loss,
541
+ logits=logits,
542
+ past_key_values=outputs[1] if len(outputs) > 1 else None,
543
+ hidden_states=outputs[2] if len(outputs) > 2 else None,
544
+ attentions=outputs[3] if len(outputs) > 3 else None,
545
+ )
546
+
547
+ def prepare_inputs_for_generation(
548
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
549
+ ):
550
+ if past_key_values:
551
+ input_ids = input_ids[:, -1:]
552
+
553
+ position_ids = kwargs.get("position_ids", None)
554
+ if attention_mask is not None and position_ids is None:
555
+ position_ids = attention_mask.long().cumsum(-1) - 1
556
+ position_ids.masked_fill_(attention_mask == 0, 1)
557
+ if past_key_values:
558
+ position_ids = position_ids[:, -1].unsqueeze(-1)
559
+
560
+ if inputs_embeds is not None and past_key_values is None:
561
+ model_inputs = {"inputs_embeds": inputs_embeds}
562
+ else:
563
+ model_inputs = {"input_ids": input_ids}
564
+
565
+ model_inputs.update({
566
+ "position_ids": position_ids,
567
+ "past_key_values": past_key_values,
568
+ "use_cache": kwargs.get("use_cache"),
569
+ "attention_mask": attention_mask,
570
+ })
571
+
572
+ return model_inputs