Update inference.py
Browse files- inference.py +517 -79
inference.py
CHANGED
|
@@ -1,142 +1,580 @@
|
|
| 1 |
"""
|
| 2 |
Helion-OSC Inference Script
|
| 3 |
DeepXR/Helion-OSC - Mathematical Coding Language Model
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class HelionOSCInference:
|
| 12 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def __init__(
|
| 15 |
self,
|
| 16 |
model_name: str = "DeepXR/Helion-OSC",
|
| 17 |
device: Optional[str] = None,
|
| 18 |
-
load_in_8bit: bool = False
|
|
|
|
|
|
|
|
|
|
| 19 |
):
|
| 20 |
"""
|
| 21 |
Initialize the Helion-OSC model
|
| 22 |
|
| 23 |
Args:
|
| 24 |
model_name: HuggingFace model identifier
|
| 25 |
-
device: Device to load model on (cuda/cpu)
|
| 26 |
-
load_in_8bit:
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
model_kwargs["load_in_8bit"] = True
|
| 37 |
-
|
| 38 |
-
self.
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
**model_kwargs
|
| 42 |
)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def generate(
|
| 51 |
self,
|
| 52 |
-
prompt: str,
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
num_return_sequences: int = 1,
|
| 58 |
-
do_sample: bool = True,
|
| 59 |
**kwargs
|
| 60 |
-
) -> str:
|
| 61 |
"""
|
| 62 |
-
Generate
|
| 63 |
|
| 64 |
Args:
|
| 65 |
-
prompt: Input prompt
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
do_sample: Whether to use sampling
|
| 72 |
|
| 73 |
Returns:
|
| 74 |
-
Generated text
|
| 75 |
"""
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
with torch.no_grad():
|
| 79 |
outputs = self.model.generate(
|
| 80 |
**inputs,
|
| 81 |
-
max_length=max_length,
|
| 82 |
-
temperature=temperature,
|
| 83 |
-
top_p=top_p,
|
| 84 |
-
top_k=top_k,
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
return self.generate(
|
| 97 |
prompt,
|
|
|
|
| 98 |
max_length=max_length,
|
| 99 |
-
|
| 100 |
-
top_p=0.95,
|
| 101 |
-
do_sample=True
|
| 102 |
)
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return self.generate(
|
| 107 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
max_length=max_length,
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
do_sample=False
|
| 112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
def main():
|
| 116 |
-
"""Example usage"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
# Initialize model
|
| 118 |
-
helion = HelionOSCInference(
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
print(
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
result = helion.mathematical_reasoning(math_prompt)
|
| 132 |
-
print(f"
|
| 133 |
-
|
| 134 |
-
# Example 3: Algorithm
|
| 135 |
-
|
| 136 |
-
print("
|
| 137 |
-
print(
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
|
|
|
| 1 |
"""
|
| 2 |
Helion-OSC Inference Script
|
| 3 |
DeepXR/Helion-OSC - Mathematical Coding Language Model
|
| 4 |
+
|
| 5 |
+
This module provides comprehensive inference capabilities for the Helion-OSC model,
|
| 6 |
+
including specialized methods for different programming and mathematical tasks.
|
| 7 |
"""
|
| 8 |
|
| 9 |
import torch
|
| 10 |
+
import json
|
| 11 |
+
import logging
|
| 12 |
+
from typing import Optional, Dict, Any, List, Union
|
| 13 |
+
from transformers import (
|
| 14 |
+
AutoTokenizer,
|
| 15 |
+
AutoModelForCausalLM,
|
| 16 |
+
GenerationConfig,
|
| 17 |
+
StoppingCriteria,
|
| 18 |
+
StoppingCriteriaList
|
| 19 |
+
)
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
import warnings
|
| 22 |
+
|
| 23 |
+
# Configure logging
|
| 24 |
+
logging.basicConfig(
|
| 25 |
+
level=logging.INFO,
|
| 26 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 27 |
+
)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class GenerationParameters:
|
| 33 |
+
"""Parameters for text generation"""
|
| 34 |
+
max_length: int = 2048
|
| 35 |
+
temperature: float = 0.7
|
| 36 |
+
top_p: float = 0.95
|
| 37 |
+
top_k: int = 50
|
| 38 |
+
repetition_penalty: float = 1.05
|
| 39 |
+
length_penalty: float = 1.0
|
| 40 |
+
do_sample: bool = True
|
| 41 |
+
num_return_sequences: int = 1
|
| 42 |
+
early_stopping: bool = False
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class CodeStoppingCriteria(StoppingCriteria):
|
| 46 |
+
"""Custom stopping criteria for code generation"""
|
| 47 |
+
|
| 48 |
+
def __init__(self, stop_sequences: List[str], tokenizer):
|
| 49 |
+
self.stop_sequences = stop_sequences
|
| 50 |
+
self.tokenizer = tokenizer
|
| 51 |
+
|
| 52 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 53 |
+
decoded = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
| 54 |
+
return any(seq in decoded for seq in self.stop_sequences)
|
| 55 |
|
| 56 |
|
| 57 |
class HelionOSCInference:
|
| 58 |
+
"""
|
| 59 |
+
Comprehensive inference wrapper for Helion-OSC model
|
| 60 |
+
|
| 61 |
+
Supports multiple generation modes:
|
| 62 |
+
- Code generation
|
| 63 |
+
- Mathematical reasoning
|
| 64 |
+
- Algorithm design
|
| 65 |
+
- Code debugging
|
| 66 |
+
- Documentation generation
|
| 67 |
+
"""
|
| 68 |
|
| 69 |
def __init__(
|
| 70 |
self,
|
| 71 |
model_name: str = "DeepXR/Helion-OSC",
|
| 72 |
device: Optional[str] = None,
|
| 73 |
+
load_in_8bit: bool = False,
|
| 74 |
+
load_in_4bit: bool = False,
|
| 75 |
+
use_flash_attention: bool = True,
|
| 76 |
+
trust_remote_code: bool = True
|
| 77 |
):
|
| 78 |
"""
|
| 79 |
Initialize the Helion-OSC model
|
| 80 |
|
| 81 |
Args:
|
| 82 |
model_name: HuggingFace model identifier
|
| 83 |
+
device: Device to load model on (cuda/cpu/mps)
|
| 84 |
+
load_in_8bit: Load model in 8-bit precision
|
| 85 |
+
load_in_4bit: Load model in 4-bit precision
|
| 86 |
+
use_flash_attention: Use flash attention for faster inference
|
| 87 |
+
trust_remote_code: Trust remote code from model repository
|
| 88 |
"""
|
| 89 |
+
self.model_name = model_name
|
| 90 |
+
self.device = self._get_device(device)
|
| 91 |
+
self.load_in_8bit = load_in_8bit
|
| 92 |
+
self.load_in_4bit = load_in_4bit
|
| 93 |
+
|
| 94 |
+
logger.info(f"Initializing Helion-OSC on {self.device}...")
|
| 95 |
+
|
| 96 |
+
# Load tokenizer
|
| 97 |
+
self.tokenizer = self._load_tokenizer(trust_remote_code)
|
| 98 |
+
|
| 99 |
+
# Load model
|
| 100 |
+
self.model = self._load_model(
|
| 101 |
+
use_flash_attention=use_flash_attention,
|
| 102 |
+
trust_remote_code=trust_remote_code
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
# Load generation configs
|
| 106 |
+
self.generation_configs = self._load_generation_configs()
|
| 107 |
|
| 108 |
+
logger.info("Model loaded successfully!")
|
| 109 |
+
self._print_model_info()
|
| 110 |
+
|
| 111 |
+
def _get_device(self, device: Optional[str]) -> str:
|
| 112 |
+
"""Determine the best available device"""
|
| 113 |
+
if device:
|
| 114 |
+
return device
|
| 115 |
+
if torch.cuda.is_available():
|
| 116 |
+
return "cuda"
|
| 117 |
+
elif torch.backends.mps.is_available():
|
| 118 |
+
return "mps"
|
| 119 |
+
return "cpu"
|
| 120 |
+
|
| 121 |
+
def _load_tokenizer(self, trust_remote_code: bool):
|
| 122 |
+
"""Load and configure tokenizer"""
|
| 123 |
+
logger.info("Loading tokenizer...")
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 125 |
+
self.model_name,
|
| 126 |
+
trust_remote_code=trust_remote_code,
|
| 127 |
+
padding_side="left"
|
| 128 |
+
)
|
| 129 |
|
| 130 |
+
# Ensure pad token is set
|
| 131 |
+
if tokenizer.pad_token is None:
|
| 132 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 133 |
+
|
| 134 |
+
return tokenizer
|
| 135 |
+
|
| 136 |
+
def _load_model(self, use_flash_attention: bool, trust_remote_code: bool):
|
| 137 |
+
"""Load and configure model"""
|
| 138 |
+
logger.info("Loading model...")
|
| 139 |
+
|
| 140 |
+
model_kwargs = {
|
| 141 |
+
"trust_remote_code": trust_remote_code,
|
| 142 |
+
"low_cpu_mem_usage": True
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
# Configure precision and quantization
|
| 146 |
+
if self.load_in_8bit:
|
| 147 |
model_kwargs["load_in_8bit"] = True
|
| 148 |
+
logger.info("Loading in 8-bit precision")
|
| 149 |
+
elif self.load_in_4bit:
|
| 150 |
+
model_kwargs["load_in_4bit"] = True
|
| 151 |
+
model_kwargs["bnb_4bit_compute_dtype"] = torch.bfloat16
|
| 152 |
+
model_kwargs["bnb_4bit_use_double_quant"] = True
|
| 153 |
+
model_kwargs["bnb_4bit_quant_type"] = "nf4"
|
| 154 |
+
logger.info("Loading in 4-bit precision")
|
| 155 |
+
else:
|
| 156 |
+
if self.device == "cuda":
|
| 157 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
| 158 |
+
else:
|
| 159 |
+
model_kwargs["torch_dtype"] = torch.float32
|
| 160 |
+
|
| 161 |
+
# Configure device mapping
|
| 162 |
+
if self.device == "cuda" and not (self.load_in_8bit or self.load_in_4bit):
|
| 163 |
+
model_kwargs["device_map"] = "auto"
|
| 164 |
+
|
| 165 |
+
# Load model
|
| 166 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 167 |
+
self.model_name,
|
| 168 |
**model_kwargs
|
| 169 |
)
|
| 170 |
|
| 171 |
+
# Move to device if needed
|
| 172 |
+
if self.device != "cuda" or (self.load_in_8bit or self.load_in_4bit):
|
| 173 |
+
if not (self.load_in_8bit or self.load_in_4bit):
|
| 174 |
+
model = model.to(self.device)
|
| 175 |
+
|
| 176 |
+
model.eval()
|
| 177 |
|
| 178 |
+
# Enable gradient checkpointing for memory efficiency if needed
|
| 179 |
+
if hasattr(model, 'gradient_checkpointing_enable'):
|
| 180 |
+
model.gradient_checkpointing_enable()
|
| 181 |
+
|
| 182 |
+
return model
|
| 183 |
+
|
| 184 |
+
def _load_generation_configs(self) -> Dict[str, GenerationParameters]:
|
| 185 |
+
"""Load task-specific generation configurations"""
|
| 186 |
+
return {
|
| 187 |
+
"code_generation": GenerationParameters(
|
| 188 |
+
max_length=4096,
|
| 189 |
+
temperature=0.7,
|
| 190 |
+
top_p=0.95,
|
| 191 |
+
top_k=50,
|
| 192 |
+
repetition_penalty=1.05,
|
| 193 |
+
do_sample=True
|
| 194 |
+
),
|
| 195 |
+
"mathematical_reasoning": GenerationParameters(
|
| 196 |
+
max_length=2048,
|
| 197 |
+
temperature=0.3,
|
| 198 |
+
top_p=0.9,
|
| 199 |
+
top_k=40,
|
| 200 |
+
repetition_penalty=1.0,
|
| 201 |
+
do_sample=False
|
| 202 |
+
),
|
| 203 |
+
"code_completion": GenerationParameters(
|
| 204 |
+
max_length=1024,
|
| 205 |
+
temperature=0.6,
|
| 206 |
+
top_p=0.92,
|
| 207 |
+
top_k=45,
|
| 208 |
+
repetition_penalty=1.03,
|
| 209 |
+
do_sample=True
|
| 210 |
+
),
|
| 211 |
+
"algorithm_design": GenerationParameters(
|
| 212 |
+
max_length=3072,
|
| 213 |
+
temperature=0.5,
|
| 214 |
+
top_p=0.93,
|
| 215 |
+
top_k=50,
|
| 216 |
+
repetition_penalty=1.08,
|
| 217 |
+
do_sample=True
|
| 218 |
+
),
|
| 219 |
+
"debugging": GenerationParameters(
|
| 220 |
+
max_length=2048,
|
| 221 |
+
temperature=0.4,
|
| 222 |
+
top_p=0.88,
|
| 223 |
+
repetition_penalty=1.0,
|
| 224 |
+
do_sample=False
|
| 225 |
+
)
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
def _print_model_info(self):
|
| 229 |
+
"""Print model information"""
|
| 230 |
+
try:
|
| 231 |
+
num_params = sum(p.numel() for p in self.model.parameters())
|
| 232 |
+
logger.info(f"Model parameters: {num_params:,}")
|
| 233 |
+
logger.info(f"Model dtype: {next(self.model.parameters()).dtype}")
|
| 234 |
+
logger.info(f"Device: {self.device}")
|
| 235 |
+
except Exception as e:
|
| 236 |
+
logger.warning(f"Could not get model info: {e}")
|
| 237 |
|
| 238 |
def generate(
|
| 239 |
self,
|
| 240 |
+
prompt: Union[str, List[str]],
|
| 241 |
+
task_type: str = "code_generation",
|
| 242 |
+
custom_params: Optional[GenerationParameters] = None,
|
| 243 |
+
stop_sequences: Optional[List[str]] = None,
|
| 244 |
+
return_full_text: bool = False,
|
|
|
|
|
|
|
| 245 |
**kwargs
|
| 246 |
+
) -> Union[str, List[str]]:
|
| 247 |
"""
|
| 248 |
+
Generate text based on prompt
|
| 249 |
|
| 250 |
Args:
|
| 251 |
+
prompt: Input prompt or list of prompts
|
| 252 |
+
task_type: Type of task (code_generation, mathematical_reasoning, etc.)
|
| 253 |
+
custom_params: Custom generation parameters
|
| 254 |
+
stop_sequences: List of sequences to stop generation
|
| 255 |
+
return_full_text: Whether to return full text including prompt
|
| 256 |
+
**kwargs: Additional generation parameters
|
|
|
|
| 257 |
|
| 258 |
Returns:
|
| 259 |
+
Generated text or list of generated texts
|
| 260 |
"""
|
| 261 |
+
# Get generation parameters
|
| 262 |
+
if custom_params:
|
| 263 |
+
params = custom_params
|
| 264 |
+
elif task_type in self.generation_configs:
|
| 265 |
+
params = self.generation_configs[task_type]
|
| 266 |
+
else:
|
| 267 |
+
logger.warning(f"Unknown task type '{task_type}', using default parameters")
|
| 268 |
+
params = GenerationParameters()
|
| 269 |
+
|
| 270 |
+
# Override with kwargs
|
| 271 |
+
for key, value in kwargs.items():
|
| 272 |
+
if hasattr(params, key):
|
| 273 |
+
setattr(params, key, value)
|
| 274 |
|
| 275 |
+
# Tokenize input
|
| 276 |
+
is_batch = isinstance(prompt, list)
|
| 277 |
+
inputs = self.tokenizer(
|
| 278 |
+
prompt,
|
| 279 |
+
return_tensors="pt",
|
| 280 |
+
padding=True,
|
| 281 |
+
truncation=True,
|
| 282 |
+
max_length=self.model.config.max_position_embeddings
|
| 283 |
+
).to(self.device)
|
| 284 |
+
|
| 285 |
+
# Setup stopping criteria
|
| 286 |
+
stopping_criteria = None
|
| 287 |
+
if stop_sequences:
|
| 288 |
+
stopping_criteria = StoppingCriteriaList([
|
| 289 |
+
CodeStoppingCriteria(stop_sequences, self.tokenizer)
|
| 290 |
+
])
|
| 291 |
+
|
| 292 |
+
# Generate
|
| 293 |
with torch.no_grad():
|
| 294 |
outputs = self.model.generate(
|
| 295 |
**inputs,
|
| 296 |
+
max_length=params.max_length,
|
| 297 |
+
temperature=params.temperature,
|
| 298 |
+
top_p=params.top_p,
|
| 299 |
+
top_k=params.top_k,
|
| 300 |
+
repetition_penalty=params.repetition_penalty,
|
| 301 |
+
length_penalty=params.length_penalty,
|
| 302 |
+
do_sample=params.do_sample,
|
| 303 |
+
num_return_sequences=params.num_return_sequences,
|
| 304 |
+
early_stopping=params.early_stopping,
|
| 305 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 306 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 307 |
+
stopping_criteria=stopping_criteria
|
| 308 |
)
|
| 309 |
|
| 310 |
+
# Decode outputs
|
| 311 |
+
generated_texts = []
|
| 312 |
+
for output in outputs:
|
| 313 |
+
text = self.tokenizer.decode(output, skip_special_tokens=True)
|
| 314 |
+
if not return_full_text and not is_batch:
|
| 315 |
+
# Remove prompt from single generation
|
| 316 |
+
if isinstance(prompt, str):
|
| 317 |
+
text = text[len(prompt):].strip()
|
| 318 |
+
generated_texts.append(text)
|
| 319 |
+
|
| 320 |
+
return generated_texts if is_batch or params.num_return_sequences > 1 else generated_texts[0]
|
| 321 |
+
|
| 322 |
+
def code_generation(
|
| 323 |
+
self,
|
| 324 |
+
prompt: str,
|
| 325 |
+
language: Optional[str] = None,
|
| 326 |
+
max_length: int = 4096,
|
| 327 |
+
**kwargs
|
| 328 |
+
) -> str:
|
| 329 |
+
"""
|
| 330 |
+
Generate code for a given prompt
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
prompt: Code generation prompt
|
| 334 |
+
language: Programming language (optional)
|
| 335 |
+
max_length: Maximum length of generated code
|
| 336 |
+
**kwargs: Additional generation parameters
|
| 337 |
+
|
| 338 |
+
Returns:
|
| 339 |
+
Generated code
|
| 340 |
+
"""
|
| 341 |
+
if language:
|
| 342 |
+
prompt = f"Language: {language}\n{prompt}"
|
| 343 |
+
|
| 344 |
+
return self.generate(
|
| 345 |
+
prompt,
|
| 346 |
+
task_type="code_generation",
|
| 347 |
+
max_length=max_length,
|
| 348 |
+
**kwargs
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
def mathematical_reasoning(
|
| 352 |
+
self,
|
| 353 |
+
prompt: str,
|
| 354 |
+
max_length: int = 2048,
|
| 355 |
+
**kwargs
|
| 356 |
+
) -> str:
|
| 357 |
+
"""
|
| 358 |
+
Solve mathematical problems with step-by-step reasoning
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
prompt: Mathematical problem
|
| 362 |
+
max_length: Maximum length of solution
|
| 363 |
+
**kwargs: Additional generation parameters
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
Mathematical solution with reasoning
|
| 367 |
+
"""
|
| 368 |
+
return self.generate(
|
| 369 |
+
prompt,
|
| 370 |
+
task_type="mathematical_reasoning",
|
| 371 |
+
max_length=max_length,
|
| 372 |
+
**kwargs
|
| 373 |
+
)
|
| 374 |
|
| 375 |
+
def algorithm_design(
|
| 376 |
+
self,
|
| 377 |
+
prompt: str,
|
| 378 |
+
include_complexity: bool = True,
|
| 379 |
+
max_length: int = 3072,
|
| 380 |
+
**kwargs
|
| 381 |
+
) -> str:
|
| 382 |
+
"""
|
| 383 |
+
Design algorithms with complexity analysis
|
| 384 |
+
|
| 385 |
+
Args:
|
| 386 |
+
prompt: Algorithm design prompt
|
| 387 |
+
include_complexity: Whether to include complexity analysis
|
| 388 |
+
max_length: Maximum length of output
|
| 389 |
+
**kwargs: Additional generation parameters
|
| 390 |
+
|
| 391 |
+
Returns:
|
| 392 |
+
Algorithm design with analysis
|
| 393 |
+
"""
|
| 394 |
+
if include_complexity:
|
| 395 |
+
prompt += "\n\nPlease include time and space complexity analysis."
|
| 396 |
+
|
| 397 |
return self.generate(
|
| 398 |
prompt,
|
| 399 |
+
task_type="algorithm_design",
|
| 400 |
max_length=max_length,
|
| 401 |
+
**kwargs
|
|
|
|
|
|
|
| 402 |
)
|
| 403 |
|
| 404 |
+
def debug_code(
|
| 405 |
+
self,
|
| 406 |
+
code: str,
|
| 407 |
+
error_message: Optional[str] = None,
|
| 408 |
+
max_length: int = 2048,
|
| 409 |
+
**kwargs
|
| 410 |
+
) -> str:
|
| 411 |
+
"""
|
| 412 |
+
Debug code and provide fixes
|
| 413 |
+
|
| 414 |
+
Args:
|
| 415 |
+
code: Code to debug
|
| 416 |
+
error_message: Optional error message
|
| 417 |
+
max_length: Maximum length of output
|
| 418 |
+
**kwargs: Additional generation parameters
|
| 419 |
+
|
| 420 |
+
Returns:
|
| 421 |
+
Debugging analysis and fixes
|
| 422 |
+
"""
|
| 423 |
+
prompt = f"Debug the following code:\n\n```\n{code}\n```"
|
| 424 |
+
if error_message:
|
| 425 |
+
prompt += f"\n\nError message: {error_message}"
|
| 426 |
+
prompt += "\n\nProvide a detailed explanation and fixed code."
|
| 427 |
+
|
| 428 |
return self.generate(
|
| 429 |
prompt,
|
| 430 |
+
task_type="debugging",
|
| 431 |
+
max_length=max_length,
|
| 432 |
+
**kwargs
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
def complete_code(
|
| 436 |
+
self,
|
| 437 |
+
code_context: str,
|
| 438 |
+
max_length: int = 1024,
|
| 439 |
+
**kwargs
|
| 440 |
+
) -> str:
|
| 441 |
+
"""
|
| 442 |
+
Complete partial code
|
| 443 |
+
|
| 444 |
+
Args:
|
| 445 |
+
code_context: Partial code to complete
|
| 446 |
+
max_length: Maximum length of completion
|
| 447 |
+
**kwargs: Additional generation parameters
|
| 448 |
+
|
| 449 |
+
Returns:
|
| 450 |
+
Code completion
|
| 451 |
+
"""
|
| 452 |
+
return self.generate(
|
| 453 |
+
code_context,
|
| 454 |
+
task_type="code_completion",
|
| 455 |
max_length=max_length,
|
| 456 |
+
stop_sequences=["\n\n", "```", "###"],
|
| 457 |
+
**kwargs
|
|
|
|
| 458 |
)
|
| 459 |
+
|
| 460 |
+
def batch_generate(
|
| 461 |
+
self,
|
| 462 |
+
prompts: List[str],
|
| 463 |
+
task_type: str = "code_generation",
|
| 464 |
+
batch_size: int = 4,
|
| 465 |
+
**kwargs
|
| 466 |
+
) -> List[str]:
|
| 467 |
+
"""
|
| 468 |
+
Generate responses for multiple prompts in batches
|
| 469 |
+
|
| 470 |
+
Args:
|
| 471 |
+
prompts: List of prompts
|
| 472 |
+
task_type: Type of task
|
| 473 |
+
batch_size: Batch size for processing
|
| 474 |
+
**kwargs: Additional generation parameters
|
| 475 |
+
|
| 476 |
+
Returns:
|
| 477 |
+
List of generated responses
|
| 478 |
+
"""
|
| 479 |
+
results = []
|
| 480 |
+
for i in range(0, len(prompts), batch_size):
|
| 481 |
+
batch = prompts[i:i + batch_size]
|
| 482 |
+
batch_results = self.generate(batch, task_type=task_type, **kwargs)
|
| 483 |
+
if isinstance(batch_results, str):
|
| 484 |
+
batch_results = [batch_results]
|
| 485 |
+
results.extend(batch_results)
|
| 486 |
+
return results
|
| 487 |
|
| 488 |
|
| 489 |
def main():
|
| 490 |
+
"""Example usage and demonstrations"""
|
| 491 |
+
print("=" * 80)
|
| 492 |
+
print("Helion-OSC Inference Examples")
|
| 493 |
+
print("=" * 80)
|
| 494 |
+
|
| 495 |
# Initialize model
|
| 496 |
+
helion = HelionOSCInference(
|
| 497 |
+
load_in_8bit=False, # Set to True for lower memory usage
|
| 498 |
+
load_in_4bit=False # Set to True for even lower memory usage
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
# Example 1: Code Generation
|
| 502 |
+
print("\n" + "=" * 80)
|
| 503 |
+
print("Example 1: Code Generation")
|
| 504 |
+
print("=" * 80)
|
| 505 |
+
code_prompt = """Write a Python function to implement a binary search tree with the following methods:
|
| 506 |
+
- insert(value): Insert a new value
|
| 507 |
+
- search(value): Search for a value
|
| 508 |
+
- delete(value): Delete a value
|
| 509 |
+
- inorder_traversal(): Return inorder traversal
|
| 510 |
+
|
| 511 |
+
Include proper documentation and type hints."""
|
| 512 |
+
|
| 513 |
+
print(f"\nPrompt:\n{code_prompt}")
|
| 514 |
+
print("\nGenerating...")
|
| 515 |
+
result = helion.code_generation(code_prompt, language="python")
|
| 516 |
+
print(f"\nGenerated Code:\n{result}")
|
| 517 |
+
|
| 518 |
+
# Example 2: Mathematical Reasoning
|
| 519 |
+
print("\n" + "=" * 80)
|
| 520 |
+
print("Example 2: Mathematical Reasoning")
|
| 521 |
+
print("=" * 80)
|
| 522 |
+
math_prompt = """Prove that the sum of the first n natural numbers equals n(n+1)/2 using mathematical induction."""
|
| 523 |
+
|
| 524 |
+
print(f"\nPrompt:\n{math_prompt}")
|
| 525 |
+
print("\nGenerating...")
|
| 526 |
result = helion.mathematical_reasoning(math_prompt)
|
| 527 |
+
print(f"\nSolution:\n{result}")
|
| 528 |
+
|
| 529 |
+
# Example 3: Algorithm Design
|
| 530 |
+
print("\n" + "=" * 80)
|
| 531 |
+
print("Example 3: Algorithm Design")
|
| 532 |
+
print("=" * 80)
|
| 533 |
+
algo_prompt = """Design an efficient algorithm to find the longest palindromic substring in a given string."""
|
| 534 |
+
|
| 535 |
+
print(f"\nPrompt:\n{algo_prompt}")
|
| 536 |
+
print("\nGenerating...")
|
| 537 |
+
result = helion.algorithm_design(algo_prompt, include_complexity=True)
|
| 538 |
+
print(f"\nAlgorithm:\n{result}")
|
| 539 |
+
|
| 540 |
+
# Example 4: Code Debugging
|
| 541 |
+
print("\n" + "=" * 80)
|
| 542 |
+
print("Example 4: Code Debugging")
|
| 543 |
+
print("=" * 80)
|
| 544 |
+
buggy_code = """
|
| 545 |
+
def fibonacci(n):
|
| 546 |
+
if n <= 1:
|
| 547 |
+
return n
|
| 548 |
+
return fibonacci(n-1) + fibonacci(n-2)
|
| 549 |
+
|
| 550 |
+
# This is too slow for large n
|
| 551 |
+
result = fibonacci(100)
|
| 552 |
+
"""
|
| 553 |
+
|
| 554 |
+
print(f"\nBuggy Code:\n{buggy_code}")
|
| 555 |
+
print("\nGenerating debugging analysis...")
|
| 556 |
+
result = helion.debug_code(buggy_code, error_message="Takes too long to compute")
|
| 557 |
+
print(f"\nDebug Analysis:\n{result}")
|
| 558 |
+
|
| 559 |
+
# Example 5: Batch Processing
|
| 560 |
+
print("\n" + "=" * 80)
|
| 561 |
+
print("Example 5: Batch Code Generation")
|
| 562 |
+
print("=" * 80)
|
| 563 |
+
batch_prompts = [
|
| 564 |
+
"Write a Python function to reverse a linked list",
|
| 565 |
+
"Write a JavaScript function to debounce API calls",
|
| 566 |
+
"Write a Rust function to parse JSON safely"
|
| 567 |
+
]
|
| 568 |
+
|
| 569 |
+
print("\nProcessing batch prompts...")
|
| 570 |
+
results = helion.batch_generate(batch_prompts, batch_size=2)
|
| 571 |
+
for i, (prompt, result) in enumerate(zip(batch_prompts, results), 1):
|
| 572 |
+
print(f"\nPrompt {i}: {prompt}")
|
| 573 |
+
print(f"Result {i}:\n{result}\n")
|
| 574 |
+
|
| 575 |
+
print("=" * 80)
|
| 576 |
+
print("Examples completed!")
|
| 577 |
+
print("=" * 80)
|
| 578 |
|
| 579 |
|
| 580 |
if __name__ == "__main__":
|